Srdan Matosin, Patrick D. Fischer, Maxim A. Droemer, Eric Baggs, Abu Sayeed Chowdhury, Isidoro Tavares, Scott B. Ficarro, Lisa Rose Warner, Haribabu Arthanari, Rajesh Nagarajan
{"title":"槌状伯克霍尔德菌酰基载体蛋白的1H、13C和15N主链和侧链分配","authors":"Srdan Matosin, Patrick D. Fischer, Maxim A. Droemer, Eric Baggs, Abu Sayeed Chowdhury, Isidoro Tavares, Scott B. Ficarro, Lisa Rose Warner, Haribabu Arthanari, Rajesh Nagarajan","doi":"10.1007/s12104-023-10136-4","DOIUrl":null,"url":null,"abstract":"<div><p>Acyl carrier proteins (ACPs) are universally conserved proteins amongst different species and are involved in fatty acid synthesis. Bacteria utilize ACPs as acyl carriers and donors for the synthesis of products such as endotoxins or acyl homoserine lactones (AHLs), which are used in quorum sensing mechanisms. In this study, wehave expressed isotopically labeled holo-ACP from <i>Burkholderia mallei</i> in <i>Escherichia coli</i> to assign 100% of non-proline backbone amide (HN) resonances, 95.5% of aliphatic carbon resonances and 98.6% of aliphatic hydrogen sidechain resonances.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"167 - 171"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1H, 13C and 15N backbone and sidechain assignment of the Burkholderia mallei acyl carrier protein\",\"authors\":\"Srdan Matosin, Patrick D. Fischer, Maxim A. Droemer, Eric Baggs, Abu Sayeed Chowdhury, Isidoro Tavares, Scott B. Ficarro, Lisa Rose Warner, Haribabu Arthanari, Rajesh Nagarajan\",\"doi\":\"10.1007/s12104-023-10136-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acyl carrier proteins (ACPs) are universally conserved proteins amongst different species and are involved in fatty acid synthesis. Bacteria utilize ACPs as acyl carriers and donors for the synthesis of products such as endotoxins or acyl homoserine lactones (AHLs), which are used in quorum sensing mechanisms. In this study, wehave expressed isotopically labeled holo-ACP from <i>Burkholderia mallei</i> in <i>Escherichia coli</i> to assign 100% of non-proline backbone amide (HN) resonances, 95.5% of aliphatic carbon resonances and 98.6% of aliphatic hydrogen sidechain resonances.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\"17 2\",\"pages\":\"167 - 171\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-023-10136-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-023-10136-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
1H, 13C and 15N backbone and sidechain assignment of the Burkholderia mallei acyl carrier protein
Acyl carrier proteins (ACPs) are universally conserved proteins amongst different species and are involved in fatty acid synthesis. Bacteria utilize ACPs as acyl carriers and donors for the synthesis of products such as endotoxins or acyl homoserine lactones (AHLs), which are used in quorum sensing mechanisms. In this study, wehave expressed isotopically labeled holo-ACP from Burkholderia mallei in Escherichia coli to assign 100% of non-proline backbone amide (HN) resonances, 95.5% of aliphatic carbon resonances and 98.6% of aliphatic hydrogen sidechain resonances.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.