Yuan Gao, Bo Xiao, Shanshan Wang, Mingxia Chen, Wei Wang, Xinrong Yang, Yiming Shao, Rui Sun, Jie Min
{"title":"用于高效单分子有机太阳能电池的包含Y系列受体主链的窄带隙分子二元体","authors":"Yuan Gao, Bo Xiao, Shanshan Wang, Mingxia Chen, Wei Wang, Xinrong Yang, Yiming Shao, Rui Sun, Jie Min","doi":"10.1007/s11426-023-1720-x","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of organic solar cells (OSCs) is mainly related to the bulk heterojunction (BHJ) microstructure of specific active layer systems, which is often in a metastable state. A promising strategy to address the abovementioned shortcomings of BHJs is to develop single-component active layer materials. Owing to the single-component small molecule materials with defined chemical structures generally exhibit poor absorption spectra, herein we first introduced narrow bandgap Y-series acceptors into the molecular skeleton of single-component materials, and designed two molecular dyads, SM-Et-1Y and SM-Et-2Y. The optical bandgaps (<span>\\(E_{\\rm{g}}^{{\\rm{opt}}}{\\rm{s}}\\)</span>) of the two dyads are 1.364 and 1.361 eV, respectively, which are much smaller than those of previously reported single-component molecules. Consequently, the SM-Et-2Y-based single-component OSCs (SCOSCs) showed a power conversion efficiency (PCE) of 5.07%, superior to SM-Et-1Y (2.53%), which is one of the highest PCEs reported for SCOSCs to date. Moreover, both SM-Et-1Y- and SM-Et-2Y-based devices exhibited excellent photo-stability, retaining over 90% of their initial performance after 250 h of continuous illumination. Our results provide a deeper understanding of the molecular backbone and a guiding principle for the rational design or selection of non-fullerene single-component materials with suitable donor/acceptor ratios.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"66 11","pages":"3205 - 3212"},"PeriodicalIF":10.4000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narrow bandgap molecular dyads Incorporating Y-series acceptor backbones for efficient single-molecular organic solar cells\",\"authors\":\"Yuan Gao, Bo Xiao, Shanshan Wang, Mingxia Chen, Wei Wang, Xinrong Yang, Yiming Shao, Rui Sun, Jie Min\",\"doi\":\"10.1007/s11426-023-1720-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The performance of organic solar cells (OSCs) is mainly related to the bulk heterojunction (BHJ) microstructure of specific active layer systems, which is often in a metastable state. A promising strategy to address the abovementioned shortcomings of BHJs is to develop single-component active layer materials. Owing to the single-component small molecule materials with defined chemical structures generally exhibit poor absorption spectra, herein we first introduced narrow bandgap Y-series acceptors into the molecular skeleton of single-component materials, and designed two molecular dyads, SM-Et-1Y and SM-Et-2Y. The optical bandgaps (<span>\\\\(E_{\\\\rm{g}}^{{\\\\rm{opt}}}{\\\\rm{s}}\\\\)</span>) of the two dyads are 1.364 and 1.361 eV, respectively, which are much smaller than those of previously reported single-component molecules. Consequently, the SM-Et-2Y-based single-component OSCs (SCOSCs) showed a power conversion efficiency (PCE) of 5.07%, superior to SM-Et-1Y (2.53%), which is one of the highest PCEs reported for SCOSCs to date. Moreover, both SM-Et-1Y- and SM-Et-2Y-based devices exhibited excellent photo-stability, retaining over 90% of their initial performance after 250 h of continuous illumination. Our results provide a deeper understanding of the molecular backbone and a guiding principle for the rational design or selection of non-fullerene single-component materials with suitable donor/acceptor ratios.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"66 11\",\"pages\":\"3205 - 3212\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-023-1720-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-023-1720-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Narrow bandgap molecular dyads Incorporating Y-series acceptor backbones for efficient single-molecular organic solar cells
The performance of organic solar cells (OSCs) is mainly related to the bulk heterojunction (BHJ) microstructure of specific active layer systems, which is often in a metastable state. A promising strategy to address the abovementioned shortcomings of BHJs is to develop single-component active layer materials. Owing to the single-component small molecule materials with defined chemical structures generally exhibit poor absorption spectra, herein we first introduced narrow bandgap Y-series acceptors into the molecular skeleton of single-component materials, and designed two molecular dyads, SM-Et-1Y and SM-Et-2Y. The optical bandgaps (\(E_{\rm{g}}^{{\rm{opt}}}{\rm{s}}\)) of the two dyads are 1.364 and 1.361 eV, respectively, which are much smaller than those of previously reported single-component molecules. Consequently, the SM-Et-2Y-based single-component OSCs (SCOSCs) showed a power conversion efficiency (PCE) of 5.07%, superior to SM-Et-1Y (2.53%), which is one of the highest PCEs reported for SCOSCs to date. Moreover, both SM-Et-1Y- and SM-Et-2Y-based devices exhibited excellent photo-stability, retaining over 90% of their initial performance after 250 h of continuous illumination. Our results provide a deeper understanding of the molecular backbone and a guiding principle for the rational design or selection of non-fullerene single-component materials with suitable donor/acceptor ratios.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.