聚合物的粗粒分子动力学模拟:结构与动力学

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Wiley Interdisciplinary Reviews: Computational Molecular Science Pub Date : 2023-08-03 DOI:10.1002/wcms.1683
Rui Shi, Hu-Jun Qian, Zhong-Yuan Lu
{"title":"聚合物的粗粒分子动力学模拟:结构与动力学","authors":"Rui Shi,&nbsp;Hu-Jun Qian,&nbsp;Zhong-Yuan Lu","doi":"10.1002/wcms.1683","DOIUrl":null,"url":null,"abstract":"<p>For the simulations of polymeric systems, coarse-grained (CG) molecular dynamics simulations are computationally demanding not only because of their high computational efficiency, but also these CG models can provide sufficient structural and dynamical properties at both micro- and meso-scopic levels. During the past decades, developments of these CG models are roughly in two directions, that is, generic and chemically system-specific models. The developme of the formmer focuses on the capability of the model to capature the general properties of the system, for instance, scaling relations between both structural and dynamic properties with respect to chain length. On the other hand, to bridging the gap between physics and chemistry, chemically-specifi models are also widely developed which are able to retain the inherent chemical–physical properties for a given polymer system. However, due to the reduction of atomistic degree of freedom a faithful reproduction of structure and especialy dynamics properties of the system is the maijor challenge. In this review, after a brief introduction of some widely used generic models, we present an overview of both recent achievements and remainning challendges in the development of chemically-specific CG approaches, for the simulations of polymer systems.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 6","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse-grained molecular dynamics simulation of polymers: Structures and dynamics\",\"authors\":\"Rui Shi,&nbsp;Hu-Jun Qian,&nbsp;Zhong-Yuan Lu\",\"doi\":\"10.1002/wcms.1683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the simulations of polymeric systems, coarse-grained (CG) molecular dynamics simulations are computationally demanding not only because of their high computational efficiency, but also these CG models can provide sufficient structural and dynamical properties at both micro- and meso-scopic levels. During the past decades, developments of these CG models are roughly in two directions, that is, generic and chemically system-specific models. The developme of the formmer focuses on the capability of the model to capature the general properties of the system, for instance, scaling relations between both structural and dynamic properties with respect to chain length. On the other hand, to bridging the gap between physics and chemistry, chemically-specifi models are also widely developed which are able to retain the inherent chemical–physical properties for a given polymer system. However, due to the reduction of atomistic degree of freedom a faithful reproduction of structure and especialy dynamics properties of the system is the maijor challenge. In this review, after a brief introduction of some widely used generic models, we present an overview of both recent achievements and remainning challendges in the development of chemically-specific CG approaches, for the simulations of polymer systems.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"13 6\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1683\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1683","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于聚合物系统的模拟,粗粒度(CG)分子动力学模拟在计算上要求很高,不仅因为它们的计算效率高,而且这些CG模型可以在微观和介观水平上提供足够的结构和动力学特性。在过去的几十年里,这些CG模型的发展大致有两个方向,即通用模型和化学系统特定模型。该公式的发展重点是模型能够满足系统的一般性质,例如,结构和动力学性质之间相对于链长的比例关系。另一方面,为了弥合物理和化学之间的差距,还广泛开发了化学特定模型,这些模型能够保留给定聚合物系统固有的化学-物理特性。然而,由于原子自由度的降低,系统结构和特别是动力学特性的忠实再现是主要的挑战。在这篇综述中,在简要介绍了一些广泛使用的通用模型后,我们概述了在开发用于聚合物系统模拟的化学特异性CG方法方面的最新成就和剩余挑战。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coarse-grained molecular dynamics simulation of polymers: Structures and dynamics

For the simulations of polymeric systems, coarse-grained (CG) molecular dynamics simulations are computationally demanding not only because of their high computational efficiency, but also these CG models can provide sufficient structural and dynamical properties at both micro- and meso-scopic levels. During the past decades, developments of these CG models are roughly in two directions, that is, generic and chemically system-specific models. The developme of the formmer focuses on the capability of the model to capature the general properties of the system, for instance, scaling relations between both structural and dynamic properties with respect to chain length. On the other hand, to bridging the gap between physics and chemistry, chemically-specifi models are also widely developed which are able to retain the inherent chemical–physical properties for a given polymer system. However, due to the reduction of atomistic degree of freedom a faithful reproduction of structure and especialy dynamics properties of the system is the maijor challenge. In this review, after a brief introduction of some widely used generic models, we present an overview of both recent achievements and remainning challendges in the development of chemically-specific CG approaches, for the simulations of polymer systems.

This article is categorized under:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
期刊最新文献
Issue Information Embedded Many-Body Green's Function Methods for Electronic Excitations in Complex Molecular Systems ROBERT: Bridging the Gap Between Machine Learning and Chemistry Advanced quantum and semiclassical methods for simulating photoinduced molecular dynamics and spectroscopy Computational design of energy-related materials: From first-principles calculations to machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1