自闭症谱系障碍相关基因SYNGAP1在皮层神经发生中的非突触功能。

IF 21.2 1区 医学 Q1 NEUROSCIENCES Nature neuroscience Pub Date : 2023-11-09 DOI:10.1038/s41593-023-01477-3
Marcella Birtele, Ashley Del Dosso, Tiantian Xu, Tuan Nguyen, Brent Wilkinson, Negar Hosseini, Sarah Nguyen, Jean-Paul Urenda, Gavin Knight, Camilo Rojas, Ilse Flores, Alexander Atamian, Roger Moore, Ritin Sharma, Patrick Pirrotte, Randolph S. Ashton, Eric J. Huang, Gavin Rumbaugh, Marcelo P. Coba, Giorgia Quadrato
{"title":"自闭症谱系障碍相关基因SYNGAP1在皮层神经发生中的非突触功能。","authors":"Marcella Birtele, Ashley Del Dosso, Tiantian Xu, Tuan Nguyen, Brent Wilkinson, Negar Hosseini, Sarah Nguyen, Jean-Paul Urenda, Gavin Knight, Camilo Rojas, Ilse Flores, Alexander Atamian, Roger Moore, Ritin Sharma, Patrick Pirrotte, Randolph S. Ashton, Eric J. Huang, Gavin Rumbaugh, Marcelo P. Coba, Giorgia Quadrato","doi":"10.1038/s41593-023-01477-3","DOIUrl":null,"url":null,"abstract":"Genes involved in synaptic function are enriched among those with autism spectrum disorder (ASD)-associated rare genetic variants. Dysregulated cortical neurogenesis has been implicated as a convergent mechanism in ASD pathophysiology, yet it remains unknown how ‘synaptic’ ASD risk genes contribute to these phenotypes, which arise before synaptogenesis. Here, we show that the synaptic Ras GTPase-activating (RASGAP) protein 1 (SYNGAP1, a top ASD risk gene) is expressed within the apical domain of human radial glia cells (hRGCs). In a human cortical organoid model of SYNGAP1 haploinsufficiency, we find dysregulated cytoskeletal dynamics that impair the scaffolding and division plane of hRGCs, resulting in disrupted lamination and accelerated maturation of cortical projection neurons. Additionally, we confirmed an imbalance in the ratio of progenitors to neurons in a mouse model of Syngap1 haploinsufficiency. Thus, SYNGAP1-related brain disorders may arise through non-synaptic mechanisms, highlighting the need to study genes associated with neurodevelopmental disorders (NDDs) in diverse human cell types and developmental stages. Experiments in human cortical organoid and mouse models of SYNGAP1 haploinsufficiency, which is associated with autism spectrum disorder (ASD), reveal altered cortical neurogenesis, suggesting that a non-synaptic mechanism contributes to the disorder.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"26 12","pages":"2090-2103"},"PeriodicalIF":21.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-synaptic function of the autism spectrum disorder-associated gene SYNGAP1 in cortical neurogenesis\",\"authors\":\"Marcella Birtele, Ashley Del Dosso, Tiantian Xu, Tuan Nguyen, Brent Wilkinson, Negar Hosseini, Sarah Nguyen, Jean-Paul Urenda, Gavin Knight, Camilo Rojas, Ilse Flores, Alexander Atamian, Roger Moore, Ritin Sharma, Patrick Pirrotte, Randolph S. Ashton, Eric J. Huang, Gavin Rumbaugh, Marcelo P. Coba, Giorgia Quadrato\",\"doi\":\"10.1038/s41593-023-01477-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genes involved in synaptic function are enriched among those with autism spectrum disorder (ASD)-associated rare genetic variants. Dysregulated cortical neurogenesis has been implicated as a convergent mechanism in ASD pathophysiology, yet it remains unknown how ‘synaptic’ ASD risk genes contribute to these phenotypes, which arise before synaptogenesis. Here, we show that the synaptic Ras GTPase-activating (RASGAP) protein 1 (SYNGAP1, a top ASD risk gene) is expressed within the apical domain of human radial glia cells (hRGCs). In a human cortical organoid model of SYNGAP1 haploinsufficiency, we find dysregulated cytoskeletal dynamics that impair the scaffolding and division plane of hRGCs, resulting in disrupted lamination and accelerated maturation of cortical projection neurons. Additionally, we confirmed an imbalance in the ratio of progenitors to neurons in a mouse model of Syngap1 haploinsufficiency. Thus, SYNGAP1-related brain disorders may arise through non-synaptic mechanisms, highlighting the need to study genes associated with neurodevelopmental disorders (NDDs) in diverse human cell types and developmental stages. Experiments in human cortical organoid and mouse models of SYNGAP1 haploinsufficiency, which is associated with autism spectrum disorder (ASD), reveal altered cortical neurogenesis, suggesting that a non-synaptic mechanism contributes to the disorder.\",\"PeriodicalId\":19076,\"journal\":{\"name\":\"Nature neuroscience\",\"volume\":\"26 12\",\"pages\":\"2090-2103\"},\"PeriodicalIF\":21.2000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41593-023-01477-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-023-01477-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

与突触功能相关的基因在自闭症谱系障碍(ASD)相关的罕见遗传变异患者中富集。皮质神经发生失调被认为是ASD病理生理学中的一种趋同机制,但“突触”ASD风险基因如何对这些表型产生影响仍不清楚,这些表型发生在突触发生之前。在这里,我们发现突触Ras-GTPase激活(RASGAP)蛋白1(SYNGAP1,一种顶级ASD风险基因)在人类桡骨神经胶质细胞(hRGCs)的顶端结构域中表达。在SYNGAP1单倍性充足的人类皮层类器官模型中,我们发现细胞骨架动力学失调,损害hRGCs的支架和分裂平面,导致皮层投射神经元的层压和加速成熟。此外,我们在Syngap1单倍性充足的小鼠模型中证实了祖细胞与神经元比例的失衡。因此,SYNGAP1相关的大脑疾病可能通过非突触机制产生,这突出了研究不同人类细胞类型和发育阶段中与神经发育障碍(NDD)相关的基因的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-synaptic function of the autism spectrum disorder-associated gene SYNGAP1 in cortical neurogenesis
Genes involved in synaptic function are enriched among those with autism spectrum disorder (ASD)-associated rare genetic variants. Dysregulated cortical neurogenesis has been implicated as a convergent mechanism in ASD pathophysiology, yet it remains unknown how ‘synaptic’ ASD risk genes contribute to these phenotypes, which arise before synaptogenesis. Here, we show that the synaptic Ras GTPase-activating (RASGAP) protein 1 (SYNGAP1, a top ASD risk gene) is expressed within the apical domain of human radial glia cells (hRGCs). In a human cortical organoid model of SYNGAP1 haploinsufficiency, we find dysregulated cytoskeletal dynamics that impair the scaffolding and division plane of hRGCs, resulting in disrupted lamination and accelerated maturation of cortical projection neurons. Additionally, we confirmed an imbalance in the ratio of progenitors to neurons in a mouse model of Syngap1 haploinsufficiency. Thus, SYNGAP1-related brain disorders may arise through non-synaptic mechanisms, highlighting the need to study genes associated with neurodevelopmental disorders (NDDs) in diverse human cell types and developmental stages. Experiments in human cortical organoid and mouse models of SYNGAP1 haploinsufficiency, which is associated with autism spectrum disorder (ASD), reveal altered cortical neurogenesis, suggesting that a non-synaptic mechanism contributes to the disorder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
期刊最新文献
The cell-type underpinnings of the human functional cortical connectome Tau filaments are tethered within brain extracellular vesicles in Alzheimer’s disease Converging cortical axes A top-down slow breathing circuit that alleviates negative affect in mice A revised view of the role of CaMKII in learning and memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1