{"title":"优化带宽分配,最大限度地提高混合云P2P内容分发中用户的QoE","authors":"Zhang Yi, Guo Yuchun, Chen Yishuai","doi":"10.1016/S1005-8885(15)60656-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid cloud peer to peer (P2P) system is widely used for content distribution by utilizing user's capabilities to relieve the cloud bandwidth pressure. However, as demands for large-size files grow rapidly, it is a challenge to support high speed downloading experience simultaneously in different swarms with limited cloud bandwidth resource in such system. Therefore, it requires an optimized cloud bandwidth allocation to improve overall downloading experience of users. In this paper, we propose a system performance model which characterizes the relationship between cloud uploading bandwidth and user download speed. Based on the model, we study the cloud uploading bandwidth allocation, with the goal of optimizing user's quality of experience (QoE) that mainly depends on downloading rate of desired contents. Furthermore, to decrease the computation complexity, we put forward a heuristic algorithm to approximate the optimized solution. Simulation results show that our heuristic algorithm can obtain higher user's QoE as compared with two typical bandwidth allocation algorithms.</p></div>","PeriodicalId":35359,"journal":{"name":"Journal of China Universities of Posts and Telecommunications","volume":"22 3","pages":"Pages 84-91"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8885(15)60656-2","citationCount":"3","resultStr":"{\"title\":\"Optimized bandwidth allocation for maximizing user's QoE in hybrid cloud P2P content distribution\",\"authors\":\"Zhang Yi, Guo Yuchun, Chen Yishuai\",\"doi\":\"10.1016/S1005-8885(15)60656-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hybrid cloud peer to peer (P2P) system is widely used for content distribution by utilizing user's capabilities to relieve the cloud bandwidth pressure. However, as demands for large-size files grow rapidly, it is a challenge to support high speed downloading experience simultaneously in different swarms with limited cloud bandwidth resource in such system. Therefore, it requires an optimized cloud bandwidth allocation to improve overall downloading experience of users. In this paper, we propose a system performance model which characterizes the relationship between cloud uploading bandwidth and user download speed. Based on the model, we study the cloud uploading bandwidth allocation, with the goal of optimizing user's quality of experience (QoE) that mainly depends on downloading rate of desired contents. Furthermore, to decrease the computation complexity, we put forward a heuristic algorithm to approximate the optimized solution. Simulation results show that our heuristic algorithm can obtain higher user's QoE as compared with two typical bandwidth allocation algorithms.</p></div>\",\"PeriodicalId\":35359,\"journal\":{\"name\":\"Journal of China Universities of Posts and Telecommunications\",\"volume\":\"22 3\",\"pages\":\"Pages 84-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1005-8885(15)60656-2\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of China Universities of Posts and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1005888515606562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China Universities of Posts and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005888515606562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Optimized bandwidth allocation for maximizing user's QoE in hybrid cloud P2P content distribution
Hybrid cloud peer to peer (P2P) system is widely used for content distribution by utilizing user's capabilities to relieve the cloud bandwidth pressure. However, as demands for large-size files grow rapidly, it is a challenge to support high speed downloading experience simultaneously in different swarms with limited cloud bandwidth resource in such system. Therefore, it requires an optimized cloud bandwidth allocation to improve overall downloading experience of users. In this paper, we propose a system performance model which characterizes the relationship between cloud uploading bandwidth and user download speed. Based on the model, we study the cloud uploading bandwidth allocation, with the goal of optimizing user's quality of experience (QoE) that mainly depends on downloading rate of desired contents. Furthermore, to decrease the computation complexity, we put forward a heuristic algorithm to approximate the optimized solution. Simulation results show that our heuristic algorithm can obtain higher user's QoE as compared with two typical bandwidth allocation algorithms.