弱砂土上强颗粒层的表面承载能力

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-03-16 DOI:10.1680/jgeen.22.00094
A. Lees, A. Ali
{"title":"弱砂土上强颗粒层的表面承载能力","authors":"A. Lees, A. Ali","doi":"10.1680/jgeen.22.00094","DOIUrl":null,"url":null,"abstract":"Stronger granular layers are often placed as working platforms over weaker sand subgrade. The design of a working platform involves the calculation of a two-layer bearing capacity under rectangular loading. Existing design methods are either overly simplified, based on infinitely long strip loads, validated by a small number of small-scale 1g model tests or rely on numerous or empirically derived charts that are difficult to use or implement into design software. In this paper a new and highly practical design method is proposed where bearing capacity is determined simply from the shear strengths and unit weights of the two soil layers. It was derived from extensive FEA and FELA parametric studies in both plane strain and axisymmetric geometries and validated against published physical model tests, other FELA analyses and existing design methods. It can be applied to all rectangular shape ratios with dry and saturated layers.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The surface bearing capacity of a strong granular layer on weaker sand\",\"authors\":\"A. Lees, A. Ali\",\"doi\":\"10.1680/jgeen.22.00094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stronger granular layers are often placed as working platforms over weaker sand subgrade. The design of a working platform involves the calculation of a two-layer bearing capacity under rectangular loading. Existing design methods are either overly simplified, based on infinitely long strip loads, validated by a small number of small-scale 1g model tests or rely on numerous or empirically derived charts that are difficult to use or implement into design software. In this paper a new and highly practical design method is proposed where bearing capacity is determined simply from the shear strengths and unit weights of the two soil layers. It was derived from extensive FEA and FELA parametric studies in both plane strain and axisymmetric geometries and validated against published physical model tests, other FELA analyses and existing design methods. It can be applied to all rectangular shape ratios with dry and saturated layers.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jgeen.22.00094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jgeen.22.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

较强的颗粒层通常被放置在较弱的砂路基上作为工作平台。某工作平台的设计涉及矩形荷载作用下两层承载能力的计算。现有的设计方法要么过于简化,基于无限长条荷载,通过少量小规模1g模型试验验证,要么依赖于大量或经验推导的图表,这些图表难以使用或在设计软件中实现。本文提出了一种新的、实用的设计方法,即简单地根据两土层的抗剪强度和单位重来确定承载力。该结果来源于广泛的FEA和FELA平面应变和轴对称几何参数研究,并通过已发表的物理模型试验、其他FELA分析和现有设计方法进行验证。它可以应用于所有矩形形状比例与干燥和饱和层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The surface bearing capacity of a strong granular layer on weaker sand
Stronger granular layers are often placed as working platforms over weaker sand subgrade. The design of a working platform involves the calculation of a two-layer bearing capacity under rectangular loading. Existing design methods are either overly simplified, based on infinitely long strip loads, validated by a small number of small-scale 1g model tests or rely on numerous or empirically derived charts that are difficult to use or implement into design software. In this paper a new and highly practical design method is proposed where bearing capacity is determined simply from the shear strengths and unit weights of the two soil layers. It was derived from extensive FEA and FELA parametric studies in both plane strain and axisymmetric geometries and validated against published physical model tests, other FELA analyses and existing design methods. It can be applied to all rectangular shape ratios with dry and saturated layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1