Dongyang Li, Chunyang Gu, Shuo Wang, He Zhang, C. Gerada, R. Camilleri, Yue Zhang
{"title":"基于扩展状态观测器的永磁辅助同步磁阻电机改进控制策略","authors":"Dongyang Li, Chunyang Gu, Shuo Wang, He Zhang, C. Gerada, R. Camilleri, Yue Zhang","doi":"10.1109/ITECAsia-Pacific56316.2022.9941931","DOIUrl":null,"url":null,"abstract":"PM-Assisted synchronous reluctance machines (PMSynRM) show large speed fluctuations and poor dynamic response when encountering a large disturbance. Additionally, the PI controller is not capable of eliminating steady-state errors when disturbances are encountered. An extended state observer (ESO) based control method is proposed in this paper to resolve these problems. Thanks to the proposed control strategy, the ESO can detect and provide feedback to the controller in a short period of time, which allows it to respond in a timely manner. Speed Control accuracy is increased, and response time is reduced simultaneously as a result. Meanwhile, stability analysis is implemented to determine the stability condition of the observer, so that optimized observer parameters could be obtained. The ESO-based control strategy is effective at reducing dynamic response time and increasing control accuracy, according to simulations.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"48 1","pages":"1-6"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Control Strategy of PM-Assisted Synchronous Reluctance Machines Based on an Extended State Observer\",\"authors\":\"Dongyang Li, Chunyang Gu, Shuo Wang, He Zhang, C. Gerada, R. Camilleri, Yue Zhang\",\"doi\":\"10.1109/ITECAsia-Pacific56316.2022.9941931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PM-Assisted synchronous reluctance machines (PMSynRM) show large speed fluctuations and poor dynamic response when encountering a large disturbance. Additionally, the PI controller is not capable of eliminating steady-state errors when disturbances are encountered. An extended state observer (ESO) based control method is proposed in this paper to resolve these problems. Thanks to the proposed control strategy, the ESO can detect and provide feedback to the controller in a short period of time, which allows it to respond in a timely manner. Speed Control accuracy is increased, and response time is reduced simultaneously as a result. Meanwhile, stability analysis is implemented to determine the stability condition of the observer, so that optimized observer parameters could be obtained. The ESO-based control strategy is effective at reducing dynamic response time and increasing control accuracy, according to simulations.\",\"PeriodicalId\":45126,\"journal\":{\"name\":\"Asia-Pacific Journal-Japan Focus\",\"volume\":\"48 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal-Japan Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
An Improved Control Strategy of PM-Assisted Synchronous Reluctance Machines Based on an Extended State Observer
PM-Assisted synchronous reluctance machines (PMSynRM) show large speed fluctuations and poor dynamic response when encountering a large disturbance. Additionally, the PI controller is not capable of eliminating steady-state errors when disturbances are encountered. An extended state observer (ESO) based control method is proposed in this paper to resolve these problems. Thanks to the proposed control strategy, the ESO can detect and provide feedback to the controller in a short period of time, which allows it to respond in a timely manner. Speed Control accuracy is increased, and response time is reduced simultaneously as a result. Meanwhile, stability analysis is implemented to determine the stability condition of the observer, so that optimized observer parameters could be obtained. The ESO-based control strategy is effective at reducing dynamic response time and increasing control accuracy, according to simulations.