Myungsoo Kim, Saungeun Park, A. Sanne, S. Banerjee, D. Akinwande
{"title":"利用二硫化钼二维半导体开发毫米波纳米电子学和射频开关","authors":"Myungsoo Kim, Saungeun Park, A. Sanne, S. Banerjee, D. Akinwande","doi":"10.1109/MWSYM.2018.8439336","DOIUrl":null,"url":null,"abstract":"In this paper, we report state-of-the-art large area CVD monolayer MoS2-based RF transistors and RF switches. An embedded gate structure was used to fabricate short channel CVD Mos2Rf FETs with an intrinsic fT of 20 GHz, intrinsic $\\mathbf{f}_{\\mathbf{max}}$ of 11.4 GHz, and the high-field saturation velocity Vsat of $\\mathbf{1.88}\\times \\mathbf{10}^{\\mathbf{6}}\\ \\mathbf{cm}/\\mathbf{s}$. The gate-first process allows for enhancement mode operation, $\\mathbf{I}_{\\mathbf{ON}}/\\mathbf{I}_{\\mathbf{OFF}}$ ratio of $\\mathbf{10}^{\\mathbf{8}}$, and a transconductance $(\\mathbf{g}_{\\mathbf{m}})$ of 70 $\\pmb{\\mu} \\mathbf{S}/\\pmb{\\mu}\\mathbf{m}$. Also, we use a vertical MIM structure for a RF switch based on CVD Mos2. The device was programmed with a voltage as low as 1 V, and achieves an ON-state resistance of $\\sim \\mathbf{5}\\ \\pmb{\\Omega}$ and an OFF-state capacitance of ~6 fF. We measured and simulated the RF performance of the device up to 50 GHz and report 0.5 dB insertion loss, 15 dB isolation (both at 50 GHz), and 5 THz cutoff frequency.","PeriodicalId":6675,"journal":{"name":"2018 IEEE/MTT-S International Microwave Symposium - IMS","volume":"20 3","pages":"352-354"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards mm-wave nanoelectronics and RF switches using MoS2 2D Semiconductor\",\"authors\":\"Myungsoo Kim, Saungeun Park, A. Sanne, S. Banerjee, D. Akinwande\",\"doi\":\"10.1109/MWSYM.2018.8439336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report state-of-the-art large area CVD monolayer MoS2-based RF transistors and RF switches. An embedded gate structure was used to fabricate short channel CVD Mos2Rf FETs with an intrinsic fT of 20 GHz, intrinsic $\\\\mathbf{f}_{\\\\mathbf{max}}$ of 11.4 GHz, and the high-field saturation velocity Vsat of $\\\\mathbf{1.88}\\\\times \\\\mathbf{10}^{\\\\mathbf{6}}\\\\ \\\\mathbf{cm}/\\\\mathbf{s}$. The gate-first process allows for enhancement mode operation, $\\\\mathbf{I}_{\\\\mathbf{ON}}/\\\\mathbf{I}_{\\\\mathbf{OFF}}$ ratio of $\\\\mathbf{10}^{\\\\mathbf{8}}$, and a transconductance $(\\\\mathbf{g}_{\\\\mathbf{m}})$ of 70 $\\\\pmb{\\\\mu} \\\\mathbf{S}/\\\\pmb{\\\\mu}\\\\mathbf{m}$. Also, we use a vertical MIM structure for a RF switch based on CVD Mos2. The device was programmed with a voltage as low as 1 V, and achieves an ON-state resistance of $\\\\sim \\\\mathbf{5}\\\\ \\\\pmb{\\\\Omega}$ and an OFF-state capacitance of ~6 fF. We measured and simulated the RF performance of the device up to 50 GHz and report 0.5 dB insertion loss, 15 dB isolation (both at 50 GHz), and 5 THz cutoff frequency.\",\"PeriodicalId\":6675,\"journal\":{\"name\":\"2018 IEEE/MTT-S International Microwave Symposium - IMS\",\"volume\":\"20 3\",\"pages\":\"352-354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/MTT-S International Microwave Symposium - IMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2018.8439336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/MTT-S International Microwave Symposium - IMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2018.8439336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards mm-wave nanoelectronics and RF switches using MoS2 2D Semiconductor
In this paper, we report state-of-the-art large area CVD monolayer MoS2-based RF transistors and RF switches. An embedded gate structure was used to fabricate short channel CVD Mos2Rf FETs with an intrinsic fT of 20 GHz, intrinsic $\mathbf{f}_{\mathbf{max}}$ of 11.4 GHz, and the high-field saturation velocity Vsat of $\mathbf{1.88}\times \mathbf{10}^{\mathbf{6}}\ \mathbf{cm}/\mathbf{s}$. The gate-first process allows for enhancement mode operation, $\mathbf{I}_{\mathbf{ON}}/\mathbf{I}_{\mathbf{OFF}}$ ratio of $\mathbf{10}^{\mathbf{8}}$, and a transconductance $(\mathbf{g}_{\mathbf{m}})$ of 70 $\pmb{\mu} \mathbf{S}/\pmb{\mu}\mathbf{m}$. Also, we use a vertical MIM structure for a RF switch based on CVD Mos2. The device was programmed with a voltage as low as 1 V, and achieves an ON-state resistance of $\sim \mathbf{5}\ \pmb{\Omega}$ and an OFF-state capacitance of ~6 fF. We measured and simulated the RF performance of the device up to 50 GHz and report 0.5 dB insertion loss, 15 dB isolation (both at 50 GHz), and 5 THz cutoff frequency.