基于VT-DBR激光的四通道高速应变测量

Ang Lee, Zhenguo Jing, Yueying Liu, Qiang Liu, Ang Li, Yang Cheung, W. Peng
{"title":"基于VT-DBR激光的四通道高速应变测量","authors":"Ang Lee, Zhenguo Jing, Yueying Liu, Qiang Liu, Ang Li, Yang Cheung, W. Peng","doi":"10.1109/ICOCN53177.2021.9563804","DOIUrl":null,"url":null,"abstract":"Wavelength-shifting interferometry (WSI) based technology enables simultaneous high-speed demodulation of four channels of strain sensors. The four sensors are based on extrinsic Fabry-Perot interferometry (EFPI), which are constructed by splicing a section of hollow-core fiber (HCF) of about 500µm between two single-mode fiber (SMF) segments. Each sensor corresponds to one demodulation channel. We use a vernier-turned distributed Bragg reflector (VT-DBR) laser for high-speed wavelength switching, which introduces a phase shift in the wavelength domain. Based on five-step phase-shifting algorithm, phase recovery is performed with any five adjacent phase-shifting signal to achieve high-speed and stable phase demodulation. Experimental results show that this measurement system can be well applied to high-speed measurement of strain.","PeriodicalId":6756,"journal":{"name":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Four-channel high-speed strain measurement based on VT-DBR laser\",\"authors\":\"Ang Lee, Zhenguo Jing, Yueying Liu, Qiang Liu, Ang Li, Yang Cheung, W. Peng\",\"doi\":\"10.1109/ICOCN53177.2021.9563804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelength-shifting interferometry (WSI) based technology enables simultaneous high-speed demodulation of four channels of strain sensors. The four sensors are based on extrinsic Fabry-Perot interferometry (EFPI), which are constructed by splicing a section of hollow-core fiber (HCF) of about 500µm between two single-mode fiber (SMF) segments. Each sensor corresponds to one demodulation channel. We use a vernier-turned distributed Bragg reflector (VT-DBR) laser for high-speed wavelength switching, which introduces a phase shift in the wavelength domain. Based on five-step phase-shifting algorithm, phase recovery is performed with any five adjacent phase-shifting signal to achieve high-speed and stable phase demodulation. Experimental results show that this measurement system can be well applied to high-speed measurement of strain.\",\"PeriodicalId\":6756,\"journal\":{\"name\":\"2021 19th International Conference on Optical Communications and Networks (ICOCN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 19th International Conference on Optical Communications and Networks (ICOCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCN53177.2021.9563804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCN53177.2021.9563804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于移波长干涉(WSI)技术的应变传感器四通道同时高速解调。这四个传感器基于外部法布里-珀罗干涉测量(EFPI),通过在两个单模光纤(SMF)段之间拼接一段约500 μ m的空心芯光纤(HCF)来构建。每个传感器对应一个解调通道。我们使用游标转向分布式布拉格反射器(VT-DBR)激光器进行高速波长切换,这在波长域中引入了相移。基于五步移相算法,对任意五个相邻移相信号进行相位恢复,实现高速稳定的相位解调。实验结果表明,该测量系统可以很好地应用于应变的高速测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Four-channel high-speed strain measurement based on VT-DBR laser
Wavelength-shifting interferometry (WSI) based technology enables simultaneous high-speed demodulation of four channels of strain sensors. The four sensors are based on extrinsic Fabry-Perot interferometry (EFPI), which are constructed by splicing a section of hollow-core fiber (HCF) of about 500µm between two single-mode fiber (SMF) segments. Each sensor corresponds to one demodulation channel. We use a vernier-turned distributed Bragg reflector (VT-DBR) laser for high-speed wavelength switching, which introduces a phase shift in the wavelength domain. Based on five-step phase-shifting algorithm, phase recovery is performed with any five adjacent phase-shifting signal to achieve high-speed and stable phase demodulation. Experimental results show that this measurement system can be well applied to high-speed measurement of strain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Four-channel high-speed strain measurement based on VT-DBR laser Deep Learning based Optical Network Layer Recovery Mechanism for Critical Services of Power Communication Network Study of CIGS Absorber Thickness and Gradient Bandgap effect on Device Performance Multi-wavelength thulium-doped fiber laser by using Sagnac loop mirror An InP-InGaAs-NiO p-i-n photodiode with partially depleted-absorber and depleted nonabsorbing region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1