{"title":"CaTi1-x(Nb1/2Al1/2)xO3的烧结行为和微波介电性能","authors":"Akbar Khan, Asif Ali, I. Khan","doi":"10.53063/synsint.2021.1467","DOIUrl":null,"url":null,"abstract":"CaTi1-x(Nb1/2Al1/2)xO3 with x=0.1-0.5 ceramics were processed through solid state sintering. X-rays diffraction (XRD) patterns of the compositions showed that the samples have orthorhombic crystal structure with symmetry (Pbnm). The symmetry was further confirmed using Raman spectroscopy. A total of 13 Raman modes were detected, which were in agreement with the XRD results. Microstructure analysis of the samples showed porosity in the samples, presumably due to the substitution of Al, having high melting point. As the concentration of Al and Nb increased, relative permittivity (er), quality factor (Q×fo) and temperature coefficient of resonance frequency decreased. Optimum microwave dielectric properties were achieved for the composition x=0.5 sintered at 1650 °C for 8 h i.e., er ~27.09, Q×fo ~17378 GHz and tf ~ -2.5 ppm/°C.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sintering behavior and microwave dielectric properties of CaTi1-x(Nb1/2Al1/2)xO3\",\"authors\":\"Akbar Khan, Asif Ali, I. Khan\",\"doi\":\"10.53063/synsint.2021.1467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CaTi1-x(Nb1/2Al1/2)xO3 with x=0.1-0.5 ceramics were processed through solid state sintering. X-rays diffraction (XRD) patterns of the compositions showed that the samples have orthorhombic crystal structure with symmetry (Pbnm). The symmetry was further confirmed using Raman spectroscopy. A total of 13 Raman modes were detected, which were in agreement with the XRD results. Microstructure analysis of the samples showed porosity in the samples, presumably due to the substitution of Al, having high melting point. As the concentration of Al and Nb increased, relative permittivity (er), quality factor (Q×fo) and temperature coefficient of resonance frequency decreased. Optimum microwave dielectric properties were achieved for the composition x=0.5 sintered at 1650 °C for 8 h i.e., er ~27.09, Q×fo ~17378 GHz and tf ~ -2.5 ppm/°C.\",\"PeriodicalId\":22113,\"journal\":{\"name\":\"Synthesis and Sintering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis and Sintering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53063/synsint.2021.1467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2021.1467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sintering behavior and microwave dielectric properties of CaTi1-x(Nb1/2Al1/2)xO3
CaTi1-x(Nb1/2Al1/2)xO3 with x=0.1-0.5 ceramics were processed through solid state sintering. X-rays diffraction (XRD) patterns of the compositions showed that the samples have orthorhombic crystal structure with symmetry (Pbnm). The symmetry was further confirmed using Raman spectroscopy. A total of 13 Raman modes were detected, which were in agreement with the XRD results. Microstructure analysis of the samples showed porosity in the samples, presumably due to the substitution of Al, having high melting point. As the concentration of Al and Nb increased, relative permittivity (er), quality factor (Q×fo) and temperature coefficient of resonance frequency decreased. Optimum microwave dielectric properties were achieved for the composition x=0.5 sintered at 1650 °C for 8 h i.e., er ~27.09, Q×fo ~17378 GHz and tf ~ -2.5 ppm/°C.