Christopher T. Chen, P. Torzilli, K. Fishbein, R. Spencer, W. Horton
{"title":"生长软骨的生物力学特性在维甲酸、软骨素酶ABC和布洛芬的存在下降低","authors":"Christopher T. Chen, P. Torzilli, K. Fishbein, R. Spencer, W. Horton","doi":"10.1115/imece2001/bed-23148","DOIUrl":null,"url":null,"abstract":"\n The objective of this study was to determine the biomechanical properties of cartilage grown in a hollow-fiber bioreactor and their correlation with biochemical properties and magnetic resonance images (MRT). Engineered/grown cartilage has been shown to be a useful resource for cartilage repair [5]. The integrity and functional strength of engineered tissues are reflected in their biomechanical properties. A better understanding of the biomechanical properties of engineered cartilage can benefit us when designing a system to grow cartilage.","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical Properties of Grown Cartilage Are Decreased in the Presence of Retinoic Acid, Chondroitinase ABC and Ibuprofen\",\"authors\":\"Christopher T. Chen, P. Torzilli, K. Fishbein, R. Spencer, W. Horton\",\"doi\":\"10.1115/imece2001/bed-23148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objective of this study was to determine the biomechanical properties of cartilage grown in a hollow-fiber bioreactor and their correlation with biochemical properties and magnetic resonance images (MRT). Engineered/grown cartilage has been shown to be a useful resource for cartilage repair [5]. The integrity and functional strength of engineered tissues are reflected in their biomechanical properties. A better understanding of the biomechanical properties of engineered cartilage can benefit us when designing a system to grow cartilage.\",\"PeriodicalId\":7238,\"journal\":{\"name\":\"Advances in Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/bed-23148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biomechanical Properties of Grown Cartilage Are Decreased in the Presence of Retinoic Acid, Chondroitinase ABC and Ibuprofen
The objective of this study was to determine the biomechanical properties of cartilage grown in a hollow-fiber bioreactor and their correlation with biochemical properties and magnetic resonance images (MRT). Engineered/grown cartilage has been shown to be a useful resource for cartilage repair [5]. The integrity and functional strength of engineered tissues are reflected in their biomechanical properties. A better understanding of the biomechanical properties of engineered cartilage can benefit us when designing a system to grow cartilage.