孕激素受体的生殖功能。

O. Conneely, B. Mulac‐Jeričević, F. DeMayo, J. Lydon, B. O’Malley
{"title":"孕激素受体的生殖功能。","authors":"O. Conneely, B. Mulac‐Jeričević, F. DeMayo, J. Lydon, B. O’Malley","doi":"10.1210/RP.57.1.339","DOIUrl":null,"url":null,"abstract":"The steroid hormone progesterone plays a central role in the reproductive events associated with pregnancy establishment and maintenance. Physiological effects of progesterone are mediated by interaction of the hormone with specific intracellular progesterone receptors (PRs) that are expressed as two protein isoforms, PR-A and PR-B. Both proteins arise from the same gene and are members of the nuclear receptor superfamily of transcription factors. Since these two isoforms were identified in the early 1970s, extensive controversy has existed regarding the selective contributions of the individual PR proteins to the physiological functions of progesterone. During the past decade, significant progress has been made in this regard using two complimentary approaches. First, analysis of the structural and functional relationships of each isoform using in vitro systems has generated compelling evidence to support the conclusion that PR-A and PR-B have different transcription activation properties when liganded to progesterone. Second, the advent of gene-targeting approaches to introduce subtle mutations into the mouse genome has facilitated the evaluation of the significance of observations made in vitro in a physiological context. Selective ablation of PR-A and PR-B proteins in mice using these technologies has allowed us to address the spatiotemporal expression and contribution of the individual PR isoforms to the pleiotropic reproductive activities of progesterone. Analysis of the phenotypic consequences of these mutations on female reproductive function has provided proof of concept that the distinct transcriptional responses to PR-A and PR-B observed in cell-based transactivation assays are, indeed, reflected in an ability of the individual isoforms to elicit distinct, physiological responses to progesterone. In PR-A knockout mice, in which the expression of the PR-A isoform is selectively ablated (PRAKO), the PR-B isoform functions in a tissue-specific manner to mediate a subset of the reproductive functions of PRs. Ablation of PR-A does not affect responses of the mammary gland or thymus to progesterone but instead results in severe abnormalities in ovarian and uterine function, leading to female infertility. These tissue-selective activities of PR-B are due to this isoform's ability to regulate a subset of progesterone-responsive target genes in reproductive tissues rather than to differences in its spatiotemporal expression relative to the PR-A isoform. More recent studies using PR-B knockout (PRBKO) mice have shown that ablation of PR-B does not affect ovarian, uterine, or thymic responses to progesterone but rather results in reduced mammary ductal morphogenesis. Thus, PR-A is both necessary and sufficient to elicit the progesterone-dependent reproductive responses necessary for female fertility, while PR-B is required to elicit normal proliferative responses of the mammary gland to progesterone. This chapter will summarize recent progress in our understanding of the selective contribution of the two PR isoforms to progesterone action.","PeriodicalId":21099,"journal":{"name":"Recent progress in hormone research","volume":"205 1","pages":"339-55"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"349","resultStr":"{\"title\":\"Reproductive functions of progesterone receptors.\",\"authors\":\"O. Conneely, B. Mulac‐Jeričević, F. DeMayo, J. Lydon, B. O’Malley\",\"doi\":\"10.1210/RP.57.1.339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The steroid hormone progesterone plays a central role in the reproductive events associated with pregnancy establishment and maintenance. Physiological effects of progesterone are mediated by interaction of the hormone with specific intracellular progesterone receptors (PRs) that are expressed as two protein isoforms, PR-A and PR-B. Both proteins arise from the same gene and are members of the nuclear receptor superfamily of transcription factors. Since these two isoforms were identified in the early 1970s, extensive controversy has existed regarding the selective contributions of the individual PR proteins to the physiological functions of progesterone. During the past decade, significant progress has been made in this regard using two complimentary approaches. First, analysis of the structural and functional relationships of each isoform using in vitro systems has generated compelling evidence to support the conclusion that PR-A and PR-B have different transcription activation properties when liganded to progesterone. Second, the advent of gene-targeting approaches to introduce subtle mutations into the mouse genome has facilitated the evaluation of the significance of observations made in vitro in a physiological context. Selective ablation of PR-A and PR-B proteins in mice using these technologies has allowed us to address the spatiotemporal expression and contribution of the individual PR isoforms to the pleiotropic reproductive activities of progesterone. Analysis of the phenotypic consequences of these mutations on female reproductive function has provided proof of concept that the distinct transcriptional responses to PR-A and PR-B observed in cell-based transactivation assays are, indeed, reflected in an ability of the individual isoforms to elicit distinct, physiological responses to progesterone. In PR-A knockout mice, in which the expression of the PR-A isoform is selectively ablated (PRAKO), the PR-B isoform functions in a tissue-specific manner to mediate a subset of the reproductive functions of PRs. Ablation of PR-A does not affect responses of the mammary gland or thymus to progesterone but instead results in severe abnormalities in ovarian and uterine function, leading to female infertility. These tissue-selective activities of PR-B are due to this isoform's ability to regulate a subset of progesterone-responsive target genes in reproductive tissues rather than to differences in its spatiotemporal expression relative to the PR-A isoform. More recent studies using PR-B knockout (PRBKO) mice have shown that ablation of PR-B does not affect ovarian, uterine, or thymic responses to progesterone but rather results in reduced mammary ductal morphogenesis. Thus, PR-A is both necessary and sufficient to elicit the progesterone-dependent reproductive responses necessary for female fertility, while PR-B is required to elicit normal proliferative responses of the mammary gland to progesterone. This chapter will summarize recent progress in our understanding of the selective contribution of the two PR isoforms to progesterone action.\",\"PeriodicalId\":21099,\"journal\":{\"name\":\"Recent progress in hormone research\",\"volume\":\"205 1\",\"pages\":\"339-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"349\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in hormone research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1210/RP.57.1.339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in hormone research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/RP.57.1.339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 349

摘要

类固醇激素黄体酮在与妊娠建立和维持相关的生殖事件中起着核心作用。孕激素的生理作用是通过与细胞内特异性孕激素受体(pr)的相互作用介导的,PR-A和PR-B是两种表达的蛋白异构体。这两种蛋白来自同一个基因,是转录因子核受体超家族的成员。自20世纪70年代初发现这两种异构体以来,关于单个PR蛋白对黄体酮生理功能的选择性贡献存在广泛的争议。在过去十年中,利用两种相互补充的办法在这方面取得了重大进展。首先,利用体外系统分析了每个异构体的结构和功能关系,得出了令人信服的证据,支持PR-A和PR-B与黄体酮配体时具有不同的转录激活特性的结论。其次,将微妙突变引入小鼠基因组的基因靶向方法的出现,促进了对体外生理背景下观察结果的重要性的评估。利用这些技术在小鼠中选择性消融PR- a和PR- b蛋白,使我们能够解决单个PR异构体对黄体酮多效性生殖活动的时空表达和贡献。对这些突变对女性生殖功能的表型影响的分析提供了一个概念的证明,即在基于细胞的转激活试验中观察到的对PR-A和PR-B的不同转录反应,确实反映在个体同种异构体对黄体酮产生不同生理反应的能力上。在PR-A敲除小鼠中,PR-A异构体的表达被选择性地切除(PRAKO), PR-B异构体以组织特异性的方式起作用,介导pr的一部分生殖功能。消融PR-A并不影响乳腺或胸腺对黄体酮的反应,但会导致卵巢和子宫功能严重异常,导致女性不孕。PR-B的这些组织选择性活性是由于该异构体调节生殖组织中黄体酮应答靶基因子集的能力,而不是由于其相对于PR-A异构体的时空表达差异。最近使用PR-B敲除(PRBKO)小鼠的研究表明,PR-B的消融不会影响卵巢、子宫或胸腺对黄体酮的反应,而是导致乳腺导管形态发生减少。因此,PR-A对于引发女性生育所需的黄体酮依赖性生殖反应是必要的和充分的,而PR-B对于引发乳腺对黄体酮的正常增殖反应是必需的。本章将总结我们对两种PR异构体对黄体酮作用的选择性贡献的理解的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reproductive functions of progesterone receptors.
The steroid hormone progesterone plays a central role in the reproductive events associated with pregnancy establishment and maintenance. Physiological effects of progesterone are mediated by interaction of the hormone with specific intracellular progesterone receptors (PRs) that are expressed as two protein isoforms, PR-A and PR-B. Both proteins arise from the same gene and are members of the nuclear receptor superfamily of transcription factors. Since these two isoforms were identified in the early 1970s, extensive controversy has existed regarding the selective contributions of the individual PR proteins to the physiological functions of progesterone. During the past decade, significant progress has been made in this regard using two complimentary approaches. First, analysis of the structural and functional relationships of each isoform using in vitro systems has generated compelling evidence to support the conclusion that PR-A and PR-B have different transcription activation properties when liganded to progesterone. Second, the advent of gene-targeting approaches to introduce subtle mutations into the mouse genome has facilitated the evaluation of the significance of observations made in vitro in a physiological context. Selective ablation of PR-A and PR-B proteins in mice using these technologies has allowed us to address the spatiotemporal expression and contribution of the individual PR isoforms to the pleiotropic reproductive activities of progesterone. Analysis of the phenotypic consequences of these mutations on female reproductive function has provided proof of concept that the distinct transcriptional responses to PR-A and PR-B observed in cell-based transactivation assays are, indeed, reflected in an ability of the individual isoforms to elicit distinct, physiological responses to progesterone. In PR-A knockout mice, in which the expression of the PR-A isoform is selectively ablated (PRAKO), the PR-B isoform functions in a tissue-specific manner to mediate a subset of the reproductive functions of PRs. Ablation of PR-A does not affect responses of the mammary gland or thymus to progesterone but instead results in severe abnormalities in ovarian and uterine function, leading to female infertility. These tissue-selective activities of PR-B are due to this isoform's ability to regulate a subset of progesterone-responsive target genes in reproductive tissues rather than to differences in its spatiotemporal expression relative to the PR-A isoform. More recent studies using PR-B knockout (PRBKO) mice have shown that ablation of PR-B does not affect ovarian, uterine, or thymic responses to progesterone but rather results in reduced mammary ductal morphogenesis. Thus, PR-A is both necessary and sufficient to elicit the progesterone-dependent reproductive responses necessary for female fertility, while PR-B is required to elicit normal proliferative responses of the mammary gland to progesterone. This chapter will summarize recent progress in our understanding of the selective contribution of the two PR isoforms to progesterone action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue. The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis. Monogenic human obesity syndromes. Cardiomyocyte calcium and calcium/calmodulin-dependent protein kinase II: friends or foes?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1