作为稀薄气体传感器的MWCNT嵌入式微机械谐振器的研制

H. Kishihara, I. Hanasaki, N. Matsuzuka, I. Yamashita, Y. Uraoka, Y. Isono
{"title":"作为稀薄气体传感器的MWCNT嵌入式微机械谐振器的研制","authors":"H. Kishihara, I. Hanasaki, N. Matsuzuka, I. Yamashita, Y. Uraoka, Y. Isono","doi":"10.1109/MEMSYS.2013.6474412","DOIUrl":null,"url":null,"abstract":"This research has newly developed the multi-wall carbon nanotubes (MWCNTs) embedded-micro-mechanical resonator working as a novel rarefied gas sensor. The inertial effect of rarefied gas fluid is detected as a variation of the resonance frequency, and the dissipation of the interaction energy between the resonator and the gas molecules affects the damping of oscillation. Thus, two kinds of gaseous species can be distinguished with one device. The MWCNTs have been arranged on the resonator for heightening its sensitivity by the bio-MEMS compatible process. The MWCNTs embedded-resonator has successfully demonstrated to detect and distinguish hydrogen and nitrogen gases under pressures of 0.02 Pa to 0.9 Pa.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of MWCNT embedded micromechanical resonator working as rarefied gas sensor\",\"authors\":\"H. Kishihara, I. Hanasaki, N. Matsuzuka, I. Yamashita, Y. Uraoka, Y. Isono\",\"doi\":\"10.1109/MEMSYS.2013.6474412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research has newly developed the multi-wall carbon nanotubes (MWCNTs) embedded-micro-mechanical resonator working as a novel rarefied gas sensor. The inertial effect of rarefied gas fluid is detected as a variation of the resonance frequency, and the dissipation of the interaction energy between the resonator and the gas molecules affects the damping of oscillation. Thus, two kinds of gaseous species can be distinguished with one device. The MWCNTs have been arranged on the resonator for heightening its sensitivity by the bio-MEMS compatible process. The MWCNTs embedded-resonator has successfully demonstrated to detect and distinguish hydrogen and nitrogen gases under pressures of 0.02 Pa to 0.9 Pa.\",\"PeriodicalId\":92162,\"journal\":{\"name\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2013.6474412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了多壁碳纳米管嵌入式微机械谐振器,作为一种新型的稀薄气体传感器。稀薄气体流体的惯性效应表现为谐振频率的变化,谐振腔与气体分子之间相互作用能量的耗散影响振荡的阻尼。因此,可以用一个装置来区分两种气体。为了提高谐振器的灵敏度,采用生物mems兼容工艺,在谐振器上放置了MWCNTs。MWCNTs嵌入谐振器已成功证明可以在0.02 Pa至0.9 Pa的压力下检测和区分氢气和氮气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of MWCNT embedded micromechanical resonator working as rarefied gas sensor
This research has newly developed the multi-wall carbon nanotubes (MWCNTs) embedded-micro-mechanical resonator working as a novel rarefied gas sensor. The inertial effect of rarefied gas fluid is detected as a variation of the resonance frequency, and the dissipation of the interaction energy between the resonator and the gas molecules affects the damping of oscillation. Thus, two kinds of gaseous species can be distinguished with one device. The MWCNTs have been arranged on the resonator for heightening its sensitivity by the bio-MEMS compatible process. The MWCNTs embedded-resonator has successfully demonstrated to detect and distinguish hydrogen and nitrogen gases under pressures of 0.02 Pa to 0.9 Pa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of solid UV cross-linked PEGDA for biological applications Neurospheroid array on a flexible substrate for cortical microstimulation Simultaneous ablation and injection by electrically-induced mono-dispersed bubble knife for biomedical applications High power lithium ion microbatteries with lithographically defined 3-D porous electrodes Silicon nanowire and cantilever electromechanical switches with integrated piezoresistive transducers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1