{"title":"Sealless 3-D microfluidic channel fabrication by sacrificial caramel template direct-patterning","authors":"Y. Koyata, M. Ikeuchi, K. Ikuta","doi":"10.1109/MEMSYS.2013.6474240","DOIUrl":null,"url":null,"abstract":"We succeeded in developing a new simple and unique method to fabricate enclosed microfluidic channels within Polydimethylsiloxane (PDMS) substrates. The procedure is extremely straight forward, where sacrificial caramel embedded inside solid PDMS simply dissolves to form arbitrary shaped enclosed channels. Arbitrary microchannel network including 3-D interchanges, cross-junctions and very thin (≤1μm) cylindrical channels can be produced with no costly equipment and no cytotoxic material.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"4 1","pages":"311-314"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sealless 3-D microfluidic channel fabrication by sacrificial caramel template direct-patterning
We succeeded in developing a new simple and unique method to fabricate enclosed microfluidic channels within Polydimethylsiloxane (PDMS) substrates. The procedure is extremely straight forward, where sacrificial caramel embedded inside solid PDMS simply dissolves to form arbitrary shaped enclosed channels. Arbitrary microchannel network including 3-D interchanges, cross-junctions and very thin (≤1μm) cylindrical channels can be produced with no costly equipment and no cytotoxic material.