S. Barmaver, Muniesh Muthaiyan Shanmugam, Yen Chang, Odvogmed Bayansan, Prerana Bhan, Gong-Her Wu, O. I. Wagner
{"title":"在秀丽隐杆线虫感觉神经元中,中间丝IFB‐1的缺失会降低线粒体的流动性、密度和生理功能","authors":"S. Barmaver, Muniesh Muthaiyan Shanmugam, Yen Chang, Odvogmed Bayansan, Prerana Bhan, Gong-Her Wu, O. I. Wagner","doi":"10.1111/tra.12838","DOIUrl":null,"url":null,"abstract":"Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In Caenorhabditis elegans, among the 11 cytoplasmic IF family proteins, IFB‐1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB‐1 leads to mild dye‐filling and significant chemotaxis defects as well as reduced life span. Sensory neuron development is affected and mitochondrial transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB‐1 mutants likely independent of the fission and fusion machinery. Oxygen consumption and mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb‐1 gene. Membrane potential also seems to play a role in transport such as carbonyl cyanide p‐(trifluoromethoxy)phenylhydrazone treatment led to increased directional switching of mitochondria. Mitochondria co‐localize with IFB‐1 in worm neurons and appear in a complex with IFB‐1 in pull‐down assays. In summary, we propose a model in which neuronal IFs may serve as critical (transient) anchor points for mitochondria during their long‐range transport in neurons for steady and balanced transport.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"56 1","pages":"270 - 286"},"PeriodicalIF":3.6000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Loss of intermediate filament IFB‐1 reduces mobility, density, and physiological function of mitochondria in Caenorhabditis elegans sensory neurons\",\"authors\":\"S. Barmaver, Muniesh Muthaiyan Shanmugam, Yen Chang, Odvogmed Bayansan, Prerana Bhan, Gong-Her Wu, O. I. Wagner\",\"doi\":\"10.1111/tra.12838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In Caenorhabditis elegans, among the 11 cytoplasmic IF family proteins, IFB‐1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB‐1 leads to mild dye‐filling and significant chemotaxis defects as well as reduced life span. Sensory neuron development is affected and mitochondrial transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB‐1 mutants likely independent of the fission and fusion machinery. Oxygen consumption and mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb‐1 gene. Membrane potential also seems to play a role in transport such as carbonyl cyanide p‐(trifluoromethoxy)phenylhydrazone treatment led to increased directional switching of mitochondria. Mitochondria co‐localize with IFB‐1 in worm neurons and appear in a complex with IFB‐1 in pull‐down assays. In summary, we propose a model in which neuronal IFs may serve as critical (transient) anchor points for mitochondria during their long‐range transport in neurons for steady and balanced transport.\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":\"56 1\",\"pages\":\"270 - 286\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12838\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12838","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Loss of intermediate filament IFB‐1 reduces mobility, density, and physiological function of mitochondria in Caenorhabditis elegans sensory neurons
Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In Caenorhabditis elegans, among the 11 cytoplasmic IF family proteins, IFB‐1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB‐1 leads to mild dye‐filling and significant chemotaxis defects as well as reduced life span. Sensory neuron development is affected and mitochondrial transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB‐1 mutants likely independent of the fission and fusion machinery. Oxygen consumption and mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb‐1 gene. Membrane potential also seems to play a role in transport such as carbonyl cyanide p‐(trifluoromethoxy)phenylhydrazone treatment led to increased directional switching of mitochondria. Mitochondria co‐localize with IFB‐1 in worm neurons and appear in a complex with IFB‐1 in pull‐down assays. In summary, we propose a model in which neuronal IFs may serve as critical (transient) anchor points for mitochondria during their long‐range transport in neurons for steady and balanced transport.
期刊介绍:
Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement.
All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision.
Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.