{"title":"生物医学设备应用的多兆赫IPT系统","authors":"Nunzio Pucci, C. Kwan, D. Yates, P. Mitcheson","doi":"10.1109/PowerMEMS49317.2019.82063203844","DOIUrl":null,"url":null,"abstract":"This paper investigates the main design constraints for the optimisation of an inductive power transfer (IPT) link for recharging implantable medical devices [1], and presents the potential advantages of operating in the multi-MHz range for such applications. The design proposed in this paper offers a fast charging solution, allowing patients to recharge their active medical implants every 4-5 years for 40% of its battery capability. The main challenge consists of obtaining good coupling and effective Q factor of the receiver coil, while minimizing the overall increase in size of the medical implant. Analysis obtained through electromagnetic simulations with CST Studio Suite for a 13.56 MHz, 1 W system suggests that it is possible to achieve a relatively high theoretical link efficiency of 66%, while keeping surface temperature increases and specific absorption rate (SAR) within the limits established in EN 45502 [2] and ICNIRP 1998 [3]. The experimental results show two feasible systems with different separation distances between the device’s metallic case and the receiver coil, achieving transfer efficiencies [11] of 41% and 53% for separations of 1 mm and 7 mm, respectively.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"81 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Megahertz IPT Systems for Biomedical Devices Applications\",\"authors\":\"Nunzio Pucci, C. Kwan, D. Yates, P. Mitcheson\",\"doi\":\"10.1109/PowerMEMS49317.2019.82063203844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the main design constraints for the optimisation of an inductive power transfer (IPT) link for recharging implantable medical devices [1], and presents the potential advantages of operating in the multi-MHz range for such applications. The design proposed in this paper offers a fast charging solution, allowing patients to recharge their active medical implants every 4-5 years for 40% of its battery capability. The main challenge consists of obtaining good coupling and effective Q factor of the receiver coil, while minimizing the overall increase in size of the medical implant. Analysis obtained through electromagnetic simulations with CST Studio Suite for a 13.56 MHz, 1 W system suggests that it is possible to achieve a relatively high theoretical link efficiency of 66%, while keeping surface temperature increases and specific absorption rate (SAR) within the limits established in EN 45502 [2] and ICNIRP 1998 [3]. The experimental results show two feasible systems with different separation distances between the device’s metallic case and the receiver coil, achieving transfer efficiencies [11] of 41% and 53% for separations of 1 mm and 7 mm, respectively.\",\"PeriodicalId\":6648,\"journal\":{\"name\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"81 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS49317.2019.82063203844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.82063203844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了用于为植入式医疗设备充电的感应功率传输(IPT)链路优化的主要设计约束[1],并提出了在此类应用中在多mhz范围内工作的潜在优势。本文提出的设计提供了一种快速充电解决方案,允许患者每4-5年为其活性医疗植入物充电40%的电池容量。主要的挑战包括获得良好的耦合和接收线圈的有效Q因子,同时最小化医疗植入物的整体尺寸增加。通过CST Studio Suite对13.56 MHz, 1 W系统进行电磁模拟分析表明,可以实现66%的相对较高的理论链路效率,同时保持表面温度升高和比吸收率(SAR)在EN 45502[2]和ICNIRP 1998[3]中规定的范围内。实验结果表明,两种可行的系统在器件的金属外壳和接收线圈之间具有不同的分离距离,在1 mm和7 mm的分离距离下,传输效率[11]分别为41%和53%。
Multi-Megahertz IPT Systems for Biomedical Devices Applications
This paper investigates the main design constraints for the optimisation of an inductive power transfer (IPT) link for recharging implantable medical devices [1], and presents the potential advantages of operating in the multi-MHz range for such applications. The design proposed in this paper offers a fast charging solution, allowing patients to recharge their active medical implants every 4-5 years for 40% of its battery capability. The main challenge consists of obtaining good coupling and effective Q factor of the receiver coil, while minimizing the overall increase in size of the medical implant. Analysis obtained through electromagnetic simulations with CST Studio Suite for a 13.56 MHz, 1 W system suggests that it is possible to achieve a relatively high theoretical link efficiency of 66%, while keeping surface temperature increases and specific absorption rate (SAR) within the limits established in EN 45502 [2] and ICNIRP 1998 [3]. The experimental results show two feasible systems with different separation distances between the device’s metallic case and the receiver coil, achieving transfer efficiencies [11] of 41% and 53% for separations of 1 mm and 7 mm, respectively.