有机物减轻硫酸盐对厌氧氨氧化污泥的抑制作用

Denghui Wei, Xiaojing Zhang, Shengnan Zhang, Jiaqian Dai, Jianghui Du, Yu He, Xiaoyu Wen
{"title":"有机物减轻硫酸盐对厌氧氨氧化污泥的抑制作用","authors":"Denghui Wei, Xiaojing Zhang, Shengnan Zhang, Jiaqian Dai, Jianghui Du, Yu He, Xiaoyu Wen","doi":"10.1080/10934529.2022.2083901","DOIUrl":null,"url":null,"abstract":"Abstract Anaerobic ammonium oxidation (Anammox) was an innovative process for nitrogen removal. In this study, the influence of sulfate in different concentrations (100, 200, 300, and 400 mg L−1) on Anammox process were investigated in nine identical sequential batch reactors, four of which were extra supplied for organics, to study the combined effect. The results indicated the obvious inhibition by sulfate which decreased the total nitrogen removal efficiency (TNRE) to 84.1%, 81.2%, 81.2%, and 72.5%, from the control results as 91.9%. Whereas, the organics addition alleviated the inhibitory effect, through consuming the oxygen in influent, promoting the secretion of protein, and inducing the denitrifying bacteria, for which the sulfate only slightly decreased the TNRE to 89.0%, 83.7%, 83.6%, and 75.7%, respectively. Candidatus Kuenenia and Denitratisoma could coexist in Anammox system and cooperatively contribute to the nitrogen removal, when treating the nitrogenous wastewater contains both sulfate and organics.","PeriodicalId":15733,"journal":{"name":"Journal of Environmental Science and Health, Part A","volume":"18 1","pages":"510 - 517"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Organics alleviate the inhibition of sulfate on ANAMMOX sludge\",\"authors\":\"Denghui Wei, Xiaojing Zhang, Shengnan Zhang, Jiaqian Dai, Jianghui Du, Yu He, Xiaoyu Wen\",\"doi\":\"10.1080/10934529.2022.2083901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Anaerobic ammonium oxidation (Anammox) was an innovative process for nitrogen removal. In this study, the influence of sulfate in different concentrations (100, 200, 300, and 400 mg L−1) on Anammox process were investigated in nine identical sequential batch reactors, four of which were extra supplied for organics, to study the combined effect. The results indicated the obvious inhibition by sulfate which decreased the total nitrogen removal efficiency (TNRE) to 84.1%, 81.2%, 81.2%, and 72.5%, from the control results as 91.9%. Whereas, the organics addition alleviated the inhibitory effect, through consuming the oxygen in influent, promoting the secretion of protein, and inducing the denitrifying bacteria, for which the sulfate only slightly decreased the TNRE to 89.0%, 83.7%, 83.6%, and 75.7%, respectively. Candidatus Kuenenia and Denitratisoma could coexist in Anammox system and cooperatively contribute to the nitrogen removal, when treating the nitrogenous wastewater contains both sulfate and organics.\",\"PeriodicalId\":15733,\"journal\":{\"name\":\"Journal of Environmental Science and Health, Part A\",\"volume\":\"18 1\",\"pages\":\"510 - 517\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health, Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2022.2083901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health, Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10934529.2022.2083901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要厌氧氨氧化(Anammox)是一种新型的脱氮工艺。在9个相同的序批式反应器中,研究了不同浓度硫酸盐(100、200、300和400 mg L−1)对厌氧氨氧化过程的影响,其中4个为有机物额外供应,以研究其联合效应。结果表明,硫酸盐对总氮去除率(TNRE)有明显的抑制作用,使总氮去除率(TNRE)分别为84.1%、81.2%、81.2%和72.5%,低于对照的91.9%。而添加有机物则通过消耗进水中的氧气、促进蛋白质分泌和诱导反硝化菌来缓解其抑制作用,其中硫酸盐仅略微降低了TNRE,分别为89.0%、83.7%、83.6%和75.7%。当处理含硫酸盐和有机物的含氮废水时,Kuenenia候选菌和脱硝菌在厌氧氨氧化系统中共存并协同脱氮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organics alleviate the inhibition of sulfate on ANAMMOX sludge
Abstract Anaerobic ammonium oxidation (Anammox) was an innovative process for nitrogen removal. In this study, the influence of sulfate in different concentrations (100, 200, 300, and 400 mg L−1) on Anammox process were investigated in nine identical sequential batch reactors, four of which were extra supplied for organics, to study the combined effect. The results indicated the obvious inhibition by sulfate which decreased the total nitrogen removal efficiency (TNRE) to 84.1%, 81.2%, 81.2%, and 72.5%, from the control results as 91.9%. Whereas, the organics addition alleviated the inhibitory effect, through consuming the oxygen in influent, promoting the secretion of protein, and inducing the denitrifying bacteria, for which the sulfate only slightly decreased the TNRE to 89.0%, 83.7%, 83.6%, and 75.7%, respectively. Candidatus Kuenenia and Denitratisoma could coexist in Anammox system and cooperatively contribute to the nitrogen removal, when treating the nitrogenous wastewater contains both sulfate and organics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adsorption kinetics, isotherms, and selectivity of trihalomethanes and haloacetonitriles by granular activated carbon. Immobilization of HRP enzyme on polymeric microspheres and its use in decolourisation of organic dyes. Integration of down-flow hanging sponge reactor to oreochromis niloticus - Brassica oleracea aquaponics system. Photocatalytic degradation process of antibiotic sulfamethoxazole by ZnO in aquatic systems: a dynamic kinetic model based on contributions of OH radical, oxygenated radical intermediates and dissolved oxygen A novel and efficient voltammetric sensor for the simultaneous determination of alizarin red S and tartrazine by using poly(leucine) functionalized carbon paste electrode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1