{"title":"标准混合固化模型单调似然的贝叶斯解","authors":"F. M. Almeida, V. D. Mayrink, E. Colosimo","doi":"10.1111/stan.12289","DOIUrl":null,"url":null,"abstract":"An advantage of the standard mixture cure model over an usual survival model is how it accounts for the population heterogeneity. It allows a joint estimation for the distribution related to the susceptible and non‐susceptible subjects. The estimation algorithm may provide ±∞$$ \\pm \\infty $$ coefficients when the likelihood cannot be maximized. This phenomenon is known as Monotone Likelihood (ML), common in survival and logistic regressions. The ML tends to appear in situations with small sample size, many censored times, many binary or unbalanced covariates. Particularly, it occurs when all uncensored cases correspond to one level of a binary covariate. The existing frequentist solution is an adaptation of the Firth correction, originally proposed to reduce bias of maximum likelihood estimates. It prevents ±∞$$ \\pm \\infty $$ estimates by penalizing the likelihood, with the penalty interpreted as the Bayesian Jeffreys prior. In this paper, the penalized likelihood of the standard mixture cure model is considered with different penalties (Bayesian priors). A Monte Carlo simulation study indicates good inference results, especially for balanced data sets. Finally, a real application involving a melanoma data illustrates the approach.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian solution to the monotone likelihood in the standard mixture cure model\",\"authors\":\"F. M. Almeida, V. D. Mayrink, E. Colosimo\",\"doi\":\"10.1111/stan.12289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An advantage of the standard mixture cure model over an usual survival model is how it accounts for the population heterogeneity. It allows a joint estimation for the distribution related to the susceptible and non‐susceptible subjects. The estimation algorithm may provide ±∞$$ \\\\pm \\\\infty $$ coefficients when the likelihood cannot be maximized. This phenomenon is known as Monotone Likelihood (ML), common in survival and logistic regressions. The ML tends to appear in situations with small sample size, many censored times, many binary or unbalanced covariates. Particularly, it occurs when all uncensored cases correspond to one level of a binary covariate. The existing frequentist solution is an adaptation of the Firth correction, originally proposed to reduce bias of maximum likelihood estimates. It prevents ±∞$$ \\\\pm \\\\infty $$ estimates by penalizing the likelihood, with the penalty interpreted as the Bayesian Jeffreys prior. In this paper, the penalized likelihood of the standard mixture cure model is considered with different penalties (Bayesian priors). A Monte Carlo simulation study indicates good inference results, especially for balanced data sets. Finally, a real application involving a melanoma data illustrates the approach.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12289\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12289","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bayesian solution to the monotone likelihood in the standard mixture cure model
An advantage of the standard mixture cure model over an usual survival model is how it accounts for the population heterogeneity. It allows a joint estimation for the distribution related to the susceptible and non‐susceptible subjects. The estimation algorithm may provide ±∞$$ \pm \infty $$ coefficients when the likelihood cannot be maximized. This phenomenon is known as Monotone Likelihood (ML), common in survival and logistic regressions. The ML tends to appear in situations with small sample size, many censored times, many binary or unbalanced covariates. Particularly, it occurs when all uncensored cases correspond to one level of a binary covariate. The existing frequentist solution is an adaptation of the Firth correction, originally proposed to reduce bias of maximum likelihood estimates. It prevents ±∞$$ \pm \infty $$ estimates by penalizing the likelihood, with the penalty interpreted as the Bayesian Jeffreys prior. In this paper, the penalized likelihood of the standard mixture cure model is considered with different penalties (Bayesian priors). A Monte Carlo simulation study indicates good inference results, especially for balanced data sets. Finally, a real application involving a melanoma data illustrates the approach.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.