基于改进半监督聚类方法的模拟电路故障分类器训练

A. Zhang, Kailun Huang, Gang Luo, Zhiqiang Zhang
{"title":"基于改进半监督聚类方法的模拟电路故障分类器训练","authors":"A. Zhang, Kailun Huang, Gang Luo, Zhiqiang Zhang","doi":"10.1109/DDCLS.2018.8516105","DOIUrl":null,"url":null,"abstract":"In recent years, semi-supervised clustering as an important research subject has significance in dealing with lack of training sample sets. However, formerly semi-supervised clustering usually cannot attend satisfactory consequence in precision and training time at the same time. Aimed to the problem of clustering method assist training classifier to label the samples, produce the time optimization algorithm. Based on prior knowledge, mining the acquired unlabeled sample sets deeply of their potential data structure and combine semi-supervised fuzzy C-means(SS-FCM) arithmetic with similarity coefficient to sort out the samples for training time improvement. On the basis of little influence on classification result accuracy, gain the fuzzy similarity matrix from Euclidean distance and assess the maximum dependable sample point with its neighborhood for their similarity degree, will avoid searching the maximum dependable sample point one by one and optimize holistic clustering time costing from reduce the iterations of classifier to some extent. Through artificial circuit simulation experiment, using improvement SS-FCM assist SVM classifier and single SVM and SS-FCM assist SVM classifier to make a comparison, verify the algorithm from classify precision and arithmetic speed and the result of experiment can prove the validity of the improvement.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"121 1","pages":"199-203"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Based on Improved Semi-Supervise Clustering Method Training Classifier for Analog Circuit Fault Classification\",\"authors\":\"A. Zhang, Kailun Huang, Gang Luo, Zhiqiang Zhang\",\"doi\":\"10.1109/DDCLS.2018.8516105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, semi-supervised clustering as an important research subject has significance in dealing with lack of training sample sets. However, formerly semi-supervised clustering usually cannot attend satisfactory consequence in precision and training time at the same time. Aimed to the problem of clustering method assist training classifier to label the samples, produce the time optimization algorithm. Based on prior knowledge, mining the acquired unlabeled sample sets deeply of their potential data structure and combine semi-supervised fuzzy C-means(SS-FCM) arithmetic with similarity coefficient to sort out the samples for training time improvement. On the basis of little influence on classification result accuracy, gain the fuzzy similarity matrix from Euclidean distance and assess the maximum dependable sample point with its neighborhood for their similarity degree, will avoid searching the maximum dependable sample point one by one and optimize holistic clustering time costing from reduce the iterations of classifier to some extent. Through artificial circuit simulation experiment, using improvement SS-FCM assist SVM classifier and single SVM and SS-FCM assist SVM classifier to make a comparison, verify the algorithm from classify precision and arithmetic speed and the result of experiment can prove the validity of the improvement.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"121 1\",\"pages\":\"199-203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8516105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

半监督聚类作为近年来的一个重要研究课题,在处理训练样本集不足方面具有重要意义。然而,以往的半监督聚类在精度和训练时间上往往不能同时取得令人满意的结果。针对聚类方法辅助训练分类器对样本进行标记的问题,提出了时间优化算法。在先验知识的基础上,对获取的未标记样本集进行深度挖掘,挖掘其潜在的数据结构,并结合半监督模糊c -均值(SS-FCM)算法和相似系数对样本进行分类,提高训练时间。在对分类结果精度影响不大的基础上,通过欧氏距离获得模糊相似矩阵,并对最大可靠样本点与其邻域的相似度进行评估,避免了逐个搜索最大可靠样本点,在一定程度上减少了分类器的迭代,从而优化了整体聚类的时间开销。通过人工电路仿真实验,利用改进的SS-FCM辅助SVM分类器与单一的SVM和SS-FCM辅助SVM分类器进行比较,从分类精度和运算速度两方面验证了算法,实验结果可以证明改进的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Based on Improved Semi-Supervise Clustering Method Training Classifier for Analog Circuit Fault Classification
In recent years, semi-supervised clustering as an important research subject has significance in dealing with lack of training sample sets. However, formerly semi-supervised clustering usually cannot attend satisfactory consequence in precision and training time at the same time. Aimed to the problem of clustering method assist training classifier to label the samples, produce the time optimization algorithm. Based on prior knowledge, mining the acquired unlabeled sample sets deeply of their potential data structure and combine semi-supervised fuzzy C-means(SS-FCM) arithmetic with similarity coefficient to sort out the samples for training time improvement. On the basis of little influence on classification result accuracy, gain the fuzzy similarity matrix from Euclidean distance and assess the maximum dependable sample point with its neighborhood for their similarity degree, will avoid searching the maximum dependable sample point one by one and optimize holistic clustering time costing from reduce the iterations of classifier to some extent. Through artificial circuit simulation experiment, using improvement SS-FCM assist SVM classifier and single SVM and SS-FCM assist SVM classifier to make a comparison, verify the algorithm from classify precision and arithmetic speed and the result of experiment can prove the validity of the improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis of High-speed Train Bogie Based on Spectrogram and Multi-channel Voting Yarn-dyed Fabric Defect Detection with YOLOV2 Based on Deep Convolution Neural Networks On the Design and Analysis of a Learning Control Algorithm for Point-to-point Tracking Tasks Iterative Learning Control for Singular System with An Arbitrary Initial State A Comparative Study of Adaptive Soft Sensors for Quality Prediction in an Industrial Refining Hydrocracking Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1