碳化和复水化对大豆油酯交换过程中煅烧鸡壳所得cao的影响

Diego Oliveira Cordeiro, J. E. Silva, A. Oliveira, W. Batista, E. Neto
{"title":"碳化和复水化对大豆油酯交换过程中煅烧鸡壳所得cao的影响","authors":"Diego Oliveira Cordeiro, J. E. Silva, A. Oliveira, W. Batista, E. Neto","doi":"10.5419/BJPG2019-0003","DOIUrl":null,"url":null,"abstract":"CaO is the most used heterogeneous catalyst in transesterification reactions due to its high catalytic activity, low solubility in methanol, non-toxicity, and low cost. One of the greatest disadvantages of using CaO is its predisposition to react with H2O and CO2 present in the atmosphere forming Ca(OH)2 and CaCO3, respectively. Therefore, the objective of this study is to investigate the catalytic capacity of the catalyst derived from calcined chicken eggshells on different days after calcination. The catalyst used was produced under a temperature of 800 °C during a period of 160 minutes. The catalytic solid was characterized on days 1, 2, 3, 4, and 15 after calcination by X-ray fluorescence (XRF), X-ray diffraction (XRD); thermogravimetric analysis (TGA); transmission electron microscopy (TEM); Brunauer, Emmett, and Teller isotherm (BET); and Hammett analysis techniques. The reaction occurred at a temperature of 65 °C, had a molar ratio of 12:1 alcohol/oil, used 6% catalyst, and was carried over a period of 3 hours. The results showed that the rehydration and carbonation processes did not significantly affect the CaO.","PeriodicalId":9312,"journal":{"name":"Brazilian Journal of Petroleum and Gas","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"INFLUENCE OF CARBONATION AND REHYDRATION ON CAO DERIVED FROM CALCINING CHICKEN EGGSHELLS IN THE CATALYTIC PROCESS OF SOYBEAN OIL TRANSESTERIFICATION\",\"authors\":\"Diego Oliveira Cordeiro, J. E. Silva, A. Oliveira, W. Batista, E. Neto\",\"doi\":\"10.5419/BJPG2019-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CaO is the most used heterogeneous catalyst in transesterification reactions due to its high catalytic activity, low solubility in methanol, non-toxicity, and low cost. One of the greatest disadvantages of using CaO is its predisposition to react with H2O and CO2 present in the atmosphere forming Ca(OH)2 and CaCO3, respectively. Therefore, the objective of this study is to investigate the catalytic capacity of the catalyst derived from calcined chicken eggshells on different days after calcination. The catalyst used was produced under a temperature of 800 °C during a period of 160 minutes. The catalytic solid was characterized on days 1, 2, 3, 4, and 15 after calcination by X-ray fluorescence (XRF), X-ray diffraction (XRD); thermogravimetric analysis (TGA); transmission electron microscopy (TEM); Brunauer, Emmett, and Teller isotherm (BET); and Hammett analysis techniques. The reaction occurred at a temperature of 65 °C, had a molar ratio of 12:1 alcohol/oil, used 6% catalyst, and was carried over a period of 3 hours. The results showed that the rehydration and carbonation processes did not significantly affect the CaO.\",\"PeriodicalId\":9312,\"journal\":{\"name\":\"Brazilian Journal of Petroleum and Gas\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Petroleum and Gas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5419/BJPG2019-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Petroleum and Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5419/BJPG2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

CaO具有催化活性高、在甲醇中溶解度低、无毒、成本低等优点,是酯交换反应中应用最多的非均相催化剂。使用CaO的最大缺点之一是它容易与大气中的H2O和CO2反应,分别生成Ca(OH)2和CaCO3。因此,本研究的目的是研究从煅烧的鸡蛋壳中提取的催化剂在煅烧后不同天的催化性能。所使用的催化剂是在800℃的温度下,经过160分钟生产的。在焙烧后的第1、2、3、4、15天,用x射线荧光(XRF)、x射线衍射(XRD)对催化固体进行了表征;热重分析;透射电镜(TEM);Brunauer, Emmett, and Teller等温线;和哈米特分析技术。反应温度为65℃,醇油摩尔比为12:1,催化剂用量为6%,反应时间为3小时。结果表明,复水化和碳酸化过程对CaO的影响不显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
INFLUENCE OF CARBONATION AND REHYDRATION ON CAO DERIVED FROM CALCINING CHICKEN EGGSHELLS IN THE CATALYTIC PROCESS OF SOYBEAN OIL TRANSESTERIFICATION
CaO is the most used heterogeneous catalyst in transesterification reactions due to its high catalytic activity, low solubility in methanol, non-toxicity, and low cost. One of the greatest disadvantages of using CaO is its predisposition to react with H2O and CO2 present in the atmosphere forming Ca(OH)2 and CaCO3, respectively. Therefore, the objective of this study is to investigate the catalytic capacity of the catalyst derived from calcined chicken eggshells on different days after calcination. The catalyst used was produced under a temperature of 800 °C during a period of 160 minutes. The catalytic solid was characterized on days 1, 2, 3, 4, and 15 after calcination by X-ray fluorescence (XRF), X-ray diffraction (XRD); thermogravimetric analysis (TGA); transmission electron microscopy (TEM); Brunauer, Emmett, and Teller isotherm (BET); and Hammett analysis techniques. The reaction occurred at a temperature of 65 °C, had a molar ratio of 12:1 alcohol/oil, used 6% catalyst, and was carried over a period of 3 hours. The results showed that the rehydration and carbonation processes did not significantly affect the CaO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMMISCIBLE VISCOUS FINGERING MODELING OF TERTIARY POLYMER FLOODING BASED ON REAL CASE OF HEAVY OIL RESERVOIR MODEL SYNTHETIC WATER-IN-OIL EMULSIONS: EFFECT OF OIL COMPOSITION ON STABILITY AND DEMULSIFIER PERFORMANCE WELL-TO-WELL (W2W) ELECTROMAGNETIC TOMOGRAPHY MODELING ADVANCEMENT: IMPROVING PRECISION AND EFFECTIVENESS WITH REGULARIZATION SCALE INHIBITOR SQUEEZE TREATMENT: AN ADVANCED BIBLIOMETRIC ANALYSIS REACTIVE FLOW IN CARBONATE ROCKS FROM LACUSTRINE ENVIRONMENTS: THE EFFECTS OF PRESSURE AND FLUID SALINITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1