化学键合BiVO4/Bi19Cl3S27异质结与快速空穴萃取动力学的连续CO2光还原

Baojing Huang , Xinxin Fu , Kai Wang , Liang Wang , Hualei Zhang , Zhongyi Liu , Bin Liu , Jun Li
{"title":"化学键合BiVO4/Bi19Cl3S27异质结与快速空穴萃取动力学的连续CO2光还原","authors":"Baojing Huang ,&nbsp;Xinxin Fu ,&nbsp;Kai Wang ,&nbsp;Liang Wang ,&nbsp;Hualei Zhang ,&nbsp;Zhongyi Liu ,&nbsp;Bin Liu ,&nbsp;Jun Li","doi":"10.1016/j.apmate.2023.100140","DOIUrl":null,"url":null,"abstract":"<div><p>Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO<sub>2</sub> photoreduction performance of photocatalysts. Herein, chemically bonded BiVO<sub>4</sub>/Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub> (BVO/BCS) S-scheme heterojunction with a strong internal electric field is designed. Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO<sub>4</sub> to Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub> via the interfacial chemical bonding interactions (i.e., Bi-O and Bi-S bonds) between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation, breaking the interfacial barrier and surface charge localization of Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub>, and further decreasing the energy of reactive hydrogen generation, CO<sub>2</sub> absorption and activation. The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system. As a result, BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO<sub>2</sub> reduction and the 24 ​h CO yield reaches 678.27 ​μmol·g<sup>−1</sup>. This work provides an atomic-level insight into charge transfer kinetics and CO<sub>2</sub> reduction mechanism in S-scheme heterojunction.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X23000325/pdfft?md5=2fef6f28965db0538dbed05d7f27317d&pid=1-s2.0-S2772834X23000325-main.pdf","citationCount":"8","resultStr":"{\"title\":\"Chemically bonded BiVO4/Bi19Cl3S27 heterojunction with fast hole extraction dynamics for continuous CO2 photoreduction\",\"authors\":\"Baojing Huang ,&nbsp;Xinxin Fu ,&nbsp;Kai Wang ,&nbsp;Liang Wang ,&nbsp;Hualei Zhang ,&nbsp;Zhongyi Liu ,&nbsp;Bin Liu ,&nbsp;Jun Li\",\"doi\":\"10.1016/j.apmate.2023.100140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO<sub>2</sub> photoreduction performance of photocatalysts. Herein, chemically bonded BiVO<sub>4</sub>/Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub> (BVO/BCS) S-scheme heterojunction with a strong internal electric field is designed. Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO<sub>4</sub> to Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub> via the interfacial chemical bonding interactions (i.e., Bi-O and Bi-S bonds) between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation, breaking the interfacial barrier and surface charge localization of Bi<sub>19</sub>Cl<sub>3</sub>S<sub>27</sub>, and further decreasing the energy of reactive hydrogen generation, CO<sub>2</sub> absorption and activation. The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system. As a result, BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO<sub>2</sub> reduction and the 24 ​h CO yield reaches 678.27 ​μmol·g<sup>−1</sup>. This work provides an atomic-level insight into charge transfer kinetics and CO<sub>2</sub> reduction mechanism in S-scheme heterojunction.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000325/pdfft?md5=2fef6f28965db0538dbed05d7f27317d&pid=1-s2.0-S2772834X23000325-main.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X23000325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

表面电荷的局部化和较低的电荷转移效率严重制约了活性氢的供给和光催化剂的CO2光还原性能。本文设计了具有强内电场的化学键合BiVO4/Bi19Cl3S27 (BVO/BCS) S-scheme异质结。实验和密度函数理论计算结果证实,精加工异质结通过BVO的Bi原子与BCS的S原子或BCS的Bi原子与BVO的O原子之间的界面化学键作用(即Bi-O和Bi-S键)加速了光生电荷从BiVO4向Bi19Cl3S27的矢量迁移,打破了Bi19Cl3S27的界面势垒和表面电荷局域化。进一步降低反应制氢、CO2吸收和活化的能量。在BVO/BCS S-scheme异质结体系中,光生载流子的分离效率远高于对应的个体。结果表明,BVO/BCS异质结的CO2连续光催化还原性能显著提高,24 h CO产率达到678.27 μmol·g−1。这项工作为s -图式异质结的电荷转移动力学和CO2还原机制提供了原子水平的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemically bonded BiVO4/Bi19Cl3S27 heterojunction with fast hole extraction dynamics for continuous CO2 photoreduction

Surface charge localization and inferior charge transfer efficiency seriously restrict the supply of reactive hydrogen and the reaction dynamics of CO2 photoreduction performance of photocatalysts. Herein, chemically bonded BiVO4/Bi19Cl3S27 (BVO/BCS) S-scheme heterojunction with a strong internal electric field is designed. Experimental and density function theory calculation results confirm that the elaborated heterojunction accelerates the vectorial migration of photogenerated charges from BiVO4 to Bi19Cl3S27 via the interfacial chemical bonding interactions (i.e., Bi-O and Bi-S bonds) between Bi atoms of BVO and S atoms of BCS or Bi atoms of BCS and O atoms of BVO under light irradiation, breaking the interfacial barrier and surface charge localization of Bi19Cl3S27, and further decreasing the energy of reactive hydrogen generation, CO2 absorption and activation. The separation efficiency of photogenerated carriers is much more efficient than that counterpart individual in BVO/BCS S-scheme heterojunction system. As a result, BVO/BCS heterojunction exhibits a significantly improved continuous photocatalytic performance for CO2 reduction and the 24 ​h CO yield reaches 678.27 ​μmol·g−1. This work provides an atomic-level insight into charge transfer kinetics and CO2 reduction mechanism in S-scheme heterojunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1