Mohit D. Ganeriwala, G. M. Sarath Chandran, N. Mohapatra
{"title":"基于CCDA的非对称III-V dgfet的简单电荷电容紧凑模型","authors":"Mohit D. Ganeriwala, G. M. Sarath Chandran, N. Mohapatra","doi":"10.1109/ICEE44586.2018.8937952","DOIUrl":null,"url":null,"abstract":"In this paper, we have proposed a simple, computationally efficient and physic-based compact model for III-V double gate field effect transistors (DGFETs) including gate insulator thickness asymmetry. The semiconductor charge and the gate capacitance are calculated using the recently proposed constant charge density approximation (CCDA). The CCDA approximation eliminates the need of knowing the exact wavefunction and thus provides an analytically simple way to model the DGFET electrostatics. The CCDA approximation assumes a constant charge centroid which is a limitation of this methodology. To address this issue, a physics-based charge centroid correction is also presented in this work. The proposed model (with charge centroid correction) is mathematically simple, scalable to any (a) (b) number of sub-bands and accurate for a wide range of gate voltages.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Charge and Capacitance Compact Model for Asymmetric III-V DGFETs Using CCDA\",\"authors\":\"Mohit D. Ganeriwala, G. M. Sarath Chandran, N. Mohapatra\",\"doi\":\"10.1109/ICEE44586.2018.8937952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have proposed a simple, computationally efficient and physic-based compact model for III-V double gate field effect transistors (DGFETs) including gate insulator thickness asymmetry. The semiconductor charge and the gate capacitance are calculated using the recently proposed constant charge density approximation (CCDA). The CCDA approximation eliminates the need of knowing the exact wavefunction and thus provides an analytically simple way to model the DGFET electrostatics. The CCDA approximation assumes a constant charge centroid which is a limitation of this methodology. To address this issue, a physics-based charge centroid correction is also presented in this work. The proposed model (with charge centroid correction) is mathematically simple, scalable to any (a) (b) number of sub-bands and accurate for a wide range of gate voltages.\",\"PeriodicalId\":6590,\"journal\":{\"name\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"16 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE44586.2018.8937952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE44586.2018.8937952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Simple Charge and Capacitance Compact Model for Asymmetric III-V DGFETs Using CCDA
In this paper, we have proposed a simple, computationally efficient and physic-based compact model for III-V double gate field effect transistors (DGFETs) including gate insulator thickness asymmetry. The semiconductor charge and the gate capacitance are calculated using the recently proposed constant charge density approximation (CCDA). The CCDA approximation eliminates the need of knowing the exact wavefunction and thus provides an analytically simple way to model the DGFET electrostatics. The CCDA approximation assumes a constant charge centroid which is a limitation of this methodology. To address this issue, a physics-based charge centroid correction is also presented in this work. The proposed model (with charge centroid correction) is mathematically simple, scalable to any (a) (b) number of sub-bands and accurate for a wide range of gate voltages.