糖尿病早期检测的优化权重Naïve贝叶斯模型

O. Somantri
{"title":"糖尿病早期检测的优化权重Naïve贝叶斯模型","authors":"O. Somantri","doi":"10.35671/telematika.v15i1.1307","DOIUrl":null,"url":null,"abstract":"This research proposes a method to optimize the accuracy of the Naïve Bayes (NB) model by optimizing weight using a genetic algorithm (GA). The process of giving optimal weight is carried out when the data will be input into the analysis process using NB. The research stages were conducted by preprocessing the data, searching for the classic naïve Bayes model, optimizing the weight, applying the hybrid model, and as the final stage, evaluating the model. The results showed an increase in the accuracy of the proposed model, where the naïve Bayes classical model produced accuracy rate of 87.69% and increased to 88.65% after optimization using GA. The results of the study conclude that the proposed optimization model can increase the accuracy of the classification of early detection of diabetes.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Optimize Weights Naïve Bayes Model for Early Detection of Diabetes\",\"authors\":\"O. Somantri\",\"doi\":\"10.35671/telematika.v15i1.1307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a method to optimize the accuracy of the Naïve Bayes (NB) model by optimizing weight using a genetic algorithm (GA). The process of giving optimal weight is carried out when the data will be input into the analysis process using NB. The research stages were conducted by preprocessing the data, searching for the classic naïve Bayes model, optimizing the weight, applying the hybrid model, and as the final stage, evaluating the model. The results showed an increase in the accuracy of the proposed model, where the naïve Bayes classical model produced accuracy rate of 87.69% and increased to 88.65% after optimization using GA. The results of the study conclude that the proposed optimization model can increase the accuracy of the classification of early detection of diabetes.\",\"PeriodicalId\":31716,\"journal\":{\"name\":\"Telematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35671/telematika.v15i1.1307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35671/telematika.v15i1.1307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种利用遗传算法(GA)优化权值来优化Naïve贝叶斯(NB)模型精度的方法。给出最优权重的过程是在使用NB将数据输入分析过程时进行的。研究阶段为数据预处理、寻找经典的naïve贝叶斯模型、优化权值、应用混合模型,最后进行模型评价。结果表明,所提出模型的准确率有所提高,其中naïve Bayes经典模型的准确率为87.69%,经过GA优化后提高到88.65%。研究结果表明,所提出的优化模型可以提高糖尿病早期检测分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Optimize Weights Naïve Bayes Model for Early Detection of Diabetes
This research proposes a method to optimize the accuracy of the Naïve Bayes (NB) model by optimizing weight using a genetic algorithm (GA). The process of giving optimal weight is carried out when the data will be input into the analysis process using NB. The research stages were conducted by preprocessing the data, searching for the classic naïve Bayes model, optimizing the weight, applying the hybrid model, and as the final stage, evaluating the model. The results showed an increase in the accuracy of the proposed model, where the naïve Bayes classical model produced accuracy rate of 87.69% and increased to 88.65% after optimization using GA. The results of the study conclude that the proposed optimization model can increase the accuracy of the classification of early detection of diabetes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
期刊最新文献
Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization Optimizing Clustering of Indonesian Text Data Using Particle Swarm Optimization Algorithm: A Case Study of the Quran Translation Monitoring Development Board based on InfluxDB and Grafana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1