相对折射率和纤芯直径对单模光纤性能的影响。

S. M. Aldabagh, M. Saeed
{"title":"相对折射率和纤芯直径对单模光纤性能的影响。","authors":"S. M. Aldabagh, M. Saeed","doi":"10.33899/EDUSJ.2020.126908.1063","DOIUrl":null,"url":null,"abstract":"In this research, the influence of the parameters design, such as the refractive index of the core, the cladding, and the radius of the core on propagation constant (β) of single-mode optical fiber in optical communication region (1.2-1.6) m have been studied and investigated. Material, waveguide, and profile dispersions are analyzed and investigated. Three models of optical fibers with different relative refractive indices () (0.004, 0.007, 0.01) at a wavelength equal 1.55 m, and three models of core radius (3,4,5) m are taken in the count. Numerical simulations and modeling are arranged depending on weakly guiding approximation for solving homogeneous wave equation derived from Maxwell’s equations. Our modeling has been solved by the aid of MATLAB software. Material and profile dispersion have no significant change for various relative refractive index, while waveguide dispersion is affected by the change of relative refractive index. the waveguide dispersion increased by increasing core diameter and the profile dispersion decreased as the core diameter increased. There is no effect on martial dispersion by increasing the core diameter. Keyword: Single-mode optical fiber, Propagation constant, Material Waveguide, and profile dispersion. لا لماعم ريثأت ن لا صئاصخ ىلع بلقلا رطقو يبسنلا راسك فايل ةيئوضلا طمنلا ةيداحأ غابدلا زاتمم امس 1 * ، ديعس مناغ فانم 2 1،2 ءايزيفلا مسق ، ةفرصلا مولعلل ةيبرتلا ةيلك ، لصوملا ةعماج قا رعلا ،لصوملا ، ةصلاخلا : لماعم لثم ميمصتلا تاملعم ريثأت ةسا رد إ ىلع يئوضلا فيلل بلقلا رطق فصنو فلاغلاو بلقلا راسكن ث تبا لأا ( راشتن β ) ةيئوضلا تلااصتلاا لاجم يف طمنلا ةيداحأ ةيئوضلا فايللأل (1.2-1.6) m مت يتلا إ لك قيقدتو ليلحت مت .ثحبلا اذه يف اهئاصقتس ،يبناجلاو يجوملاو يداملا حزقتلا نم جذامن ةثلاثل ا نم لأ ( يبسنلا راسكنلاا لماعم ريغت بسح ةيئوضلا فايل  ) (0.004, 0.007, 0.01) ( يجوملا لوط دنع 1.55 m فاصنأب طامنأ ةثلاثلو ) أ يئوضلا فيلل بلقلا راطق m ( 3,4,5 ذخا يتلا ) مت .ةسا ردلا يف ت تلاداعم نم ةدمتسملا ةسناجتملا تاجوملا تلاداعم لحل فيعضلا هيجوتلا بيرقت ىلع دامتعلااب ةجذمنلاو ةيددعلا ةاكاحملا بيترت Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 125 ةغلب هدادعا مت جمانرب مادختساب ةسا ردلا هذه يف ةجذمنلا تمتو .ليوسكام MATLAB . انظحلا ثيح أ لا يبناجلاو يداملا حزقتلا ن ريغتي ا ريثك ظوحلم لكشب كلذكو .يئوضلا فيلل يبسنلا راسكنلاا لماعم ريغتب رثأتي يجوملا حزقتلا امنيب ،يبسنلا راسكنلاا لماعم تا ريغتل لا حزقتلا رثأتي لا نيح يف .يئوضلا فيللا رطق ةدايزب يبناجلا حزقتلا لقي امنيب يئوضلا فيلل بلقلا رطق ةدايزب يبناجلا حزقتلا دادزي ام يد .يئوضلا فيلل بلقلا رطق ةدايزب :ةلادلا تاملكلا فايللاا ةيئوضلا .يبناجلاو يجوملاو يداملا حزقتلا ،راشتنلاا تباث ،طمنلا ةيداحأ Introduction Step Index The step-index fiber is represented by cylindrical waveguide dielectric core that is surrounded by the cladding. This fiber has a core refractive index higher than the cladding refractive index and radius (a). The core and cladding refracting indices are uniform as shown in equation (1). n(r) = { n1 when r < a (core) n2 when r ≥ a (cladding) (1) The step-index fiber has two types on the basic model: ● Single-mode step-index. ● Multimode step-index Single-mode step-index Single-mode step-index fiber has a very small central core of diameter which is between (2-10)μm , being very small, this diameter leads to one path for light rays through the cable while there is more than one path for light ray in multimode as shown in figure 1. The difference of refractive index between the layers in fiber is called the relative refraction index (∆); it is very small and can be written as in equation (2) [1]: Figure (1) The step-index fiber for (a) multimode step-index fiber; (b) single-mode step-index fiber [2, 3]. Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 126 ∆= n1 2 − n2 2 2n2 2 (2) In weakly guiding fiber ( n1 ≅ n2 ), the relative refractive index value: ∆= n1 − n2 n1 (3) For the step-index, the single-mode fiber must be satisfied with the condition ( 0 < V ≤ 2.405 ). Where V is Normalized frequency, it is the very beneficial parameter in optical fiber, which briefs all the important characteristics of the fiber in a single number. the normalized frequency used to calculate the number of possible modes and can be used to calculate the cut off wavelength. The relation normalized frequency is given by equation (4). V = 2πa λ √n1 2 − n2 2 (4) Where: a is the core radius, λ is the wavelength, n1 the refractive index of core and n2 the refractive index of the cladding. The ratio between the angular momentum and the phase velocity is the propagation constant (β) of the guided modes; it lies in the values of (n2k < β < n1k), where k = 2π λ . To find the Normalized propagation constant (b) [4] b = (neff 2 − n2 ) 1 2 ⁄ (n1 2 − n2 2) 1 2 ⁄ [0,1] (5) The change of the fundamental linearly polarized mode (LP01) propagating along the fiber is defined by the propagation constant β. It is suitable to define the effective refractive index for single-mode fiber as a ratio propagation constant of the fundamental mode to that of the wavenumber as shown in equation (6) [3]. neff = β k (6) Where: neff the range between n1 and n2 values. Dispersion In the optical fiber communication system, there are many problems such as dispersion in which the light pulse is spread out when it propagates through the channel of the fiber transmission. The greatest effect of dispersion occurs in the case of digital systems in the form of broadening in the width of transmitter pulses over the fiber; the broadening increased as the traveling distance in the fiber is increased. The negative phenomenon leads to inter symbol interference between traveled pulses and it leads to increase the errors. By increasing the length of the fiber, we get an increase in Dispersion; it is measured by the unit of time per unit of length, such as ns/km, ps/km, or time/km [5]. Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 127 In optical fiber communication, the total dispersion parameter is given by: D = − λ c dneff dλ2 (7) where c is light velocity and neff is the effective refractive index. There are many types of dispersion: 1Material dispersion 2Waveguide dispersion 3Profile dispersion Material dispersion The light emitted from a source with different wavelengths each wavelength propagates with different group velocity in fiber; this occurs due to the change in the refractive index through the fiber material. This effect is called material dispersion [6]. The pulse which is composed of different wavelengths also has the same effect as it propagates through the fiber. This broadening in the pulse depends upon the variation of the refractive index in the fiber along the transmission line [2]. In the dispersive medium, the phase velocity is different from group velocity depending on the amount of the dispersion in this media, when there is no dispersion. Vphase = ω k (8) νg = δω δβ (9) Where ω the angular frequency. The phase and group velocities are the same Vg = Vph. The amount of dispersion in the medium depends on the variation of refractive indices through the fiber which tends to spread out or delay the light wave depends on its wavelength; this is called the group velocity delay [4]. The group index shows the way of light behavior when the light pulses are considered the group index that become important because the light pulse broadening in time of the input signals of a different wavelength. N ≡ n − λ dn dλ (10) The plane wave propagated in the core dielectric medium of fiber which refractive index n(λ), which is infinitely extended in the direction of propagation , these wave can be used in the evalulation of the dispersion material in the fiber [7]. Dm = 1 c [ dN1 dλ A(V) + dN2 dλ 〈1 − A(V)〉] (11) Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 128 Where A(V) ≡ 1 2 [ d(bV) dV + b] (12) Dm is material dispersion, and A(V) is the fraction of LP01 mode power that is carried in the core. The total material dispersion in the fiber, which can be considered as sum material dispersion of both core and glad regin. Tg = 1 c {N1A(V) + N2[1 − A(V)] + N2Δ[A(V) − b]} (13) Figure (2), explains the relationship between the material dispersion and wavelength for pure silica. It is observed that the material dispersion tends to zero region around 1.3 μm. Waveguide Dispersion: The waveguide dispersion, in single-mode fiber, takes place as the light passes across the core and the cladding because the refractive index in the core is higher than the cladding [8]. The light moved through the core to cladding is more slowly, the difference between the refractive index of the core and the cladding is very small <<1. The different refractive index for the core and the cladding in the single-mode caused the spreading of the light at different speeds and led to the propagation delay; thus the waveguide dispersion. The chromatic dispersion defined by the combination of the material and waveguide dispersion. [9] Figure (2). The function between wavelength and material dispersion for silica [2]. Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 129 The material and waveguide dispersion is zero at wavelength λ = 1.3 μm, therefore, the best wavelength in terms of dispersion is λ = 1.3 μm where is called the zero-dispersion, but the best wavelength in terms of attenuation is λ = 1.55μm. The optical fibers' design with the zero-dispersion at a wavelength λ = 1.55μm which is called the dispersion-shifted fibers.","PeriodicalId":15610,"journal":{"name":"Journal of Education Science","volume":"30 1","pages":"124-139"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The influence of relative refractive index and core diameter on properties of single-mode optical fiber.\",\"authors\":\"S. M. Aldabagh, M. Saeed\",\"doi\":\"10.33899/EDUSJ.2020.126908.1063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the influence of the parameters design, such as the refractive index of the core, the cladding, and the radius of the core on propagation constant (β) of single-mode optical fiber in optical communication region (1.2-1.6) m have been studied and investigated. Material, waveguide, and profile dispersions are analyzed and investigated. Three models of optical fibers with different relative refractive indices () (0.004, 0.007, 0.01) at a wavelength equal 1.55 m, and three models of core radius (3,4,5) m are taken in the count. Numerical simulations and modeling are arranged depending on weakly guiding approximation for solving homogeneous wave equation derived from Maxwell’s equations. Our modeling has been solved by the aid of MATLAB software. Material and profile dispersion have no significant change for various relative refractive index, while waveguide dispersion is affected by the change of relative refractive index. the waveguide dispersion increased by increasing core diameter and the profile dispersion decreased as the core diameter increased. There is no effect on martial dispersion by increasing the core diameter. Keyword: Single-mode optical fiber, Propagation constant, Material Waveguide, and profile dispersion. لا لماعم ريثأت ن لا صئاصخ ىلع بلقلا رطقو يبسنلا راسك فايل ةيئوضلا طمنلا ةيداحأ غابدلا زاتمم امس 1 * ، ديعس مناغ فانم 2 1،2 ءايزيفلا مسق ، ةفرصلا مولعلل ةيبرتلا ةيلك ، لصوملا ةعماج قا رعلا ،لصوملا ، ةصلاخلا : لماعم لثم ميمصتلا تاملعم ريثأت ةسا رد إ ىلع يئوضلا فيلل بلقلا رطق فصنو فلاغلاو بلقلا راسكن ث تبا لأا ( راشتن β ) ةيئوضلا تلااصتلاا لاجم يف طمنلا ةيداحأ ةيئوضلا فايللأل (1.2-1.6) m مت يتلا إ لك قيقدتو ليلحت مت .ثحبلا اذه يف اهئاصقتس ،يبناجلاو يجوملاو يداملا حزقتلا نم جذامن ةثلاثل ا نم لأ ( يبسنلا راسكنلاا لماعم ريغت بسح ةيئوضلا فايل  ) (0.004, 0.007, 0.01) ( يجوملا لوط دنع 1.55 m فاصنأب طامنأ ةثلاثلو ) أ يئوضلا فيلل بلقلا راطق m ( 3,4,5 ذخا يتلا ) مت .ةسا ردلا يف ت تلاداعم نم ةدمتسملا ةسناجتملا تاجوملا تلاداعم لحل فيعضلا هيجوتلا بيرقت ىلع دامتعلااب ةجذمنلاو ةيددعلا ةاكاحملا بيترت Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 125 ةغلب هدادعا مت جمانرب مادختساب ةسا ردلا هذه يف ةجذمنلا تمتو .ليوسكام MATLAB . انظحلا ثيح أ لا يبناجلاو يداملا حزقتلا ن ريغتي ا ريثك ظوحلم لكشب كلذكو .يئوضلا فيلل يبسنلا راسكنلاا لماعم ريغتب رثأتي يجوملا حزقتلا امنيب ،يبسنلا راسكنلاا لماعم تا ريغتل لا حزقتلا رثأتي لا نيح يف .يئوضلا فيللا رطق ةدايزب يبناجلا حزقتلا لقي امنيب يئوضلا فيلل بلقلا رطق ةدايزب يبناجلا حزقتلا دادزي ام يد .يئوضلا فيلل بلقلا رطق ةدايزب :ةلادلا تاملكلا فايللاا ةيئوضلا .يبناجلاو يجوملاو يداملا حزقتلا ،راشتنلاا تباث ،طمنلا ةيداحأ Introduction Step Index The step-index fiber is represented by cylindrical waveguide dielectric core that is surrounded by the cladding. This fiber has a core refractive index higher than the cladding refractive index and radius (a). The core and cladding refracting indices are uniform as shown in equation (1). n(r) = { n1 when r < a (core) n2 when r ≥ a (cladding) (1) The step-index fiber has two types on the basic model: ● Single-mode step-index. ● Multimode step-index Single-mode step-index Single-mode step-index fiber has a very small central core of diameter which is between (2-10)μm , being very small, this diameter leads to one path for light rays through the cable while there is more than one path for light ray in multimode as shown in figure 1. The difference of refractive index between the layers in fiber is called the relative refraction index (∆); it is very small and can be written as in equation (2) [1]: Figure (1) The step-index fiber for (a) multimode step-index fiber; (b) single-mode step-index fiber [2, 3]. Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 126 ∆= n1 2 − n2 2 2n2 2 (2) In weakly guiding fiber ( n1 ≅ n2 ), the relative refractive index value: ∆= n1 − n2 n1 (3) For the step-index, the single-mode fiber must be satisfied with the condition ( 0 < V ≤ 2.405 ). Where V is Normalized frequency, it is the very beneficial parameter in optical fiber, which briefs all the important characteristics of the fiber in a single number. the normalized frequency used to calculate the number of possible modes and can be used to calculate the cut off wavelength. The relation normalized frequency is given by equation (4). V = 2πa λ √n1 2 − n2 2 (4) Where: a is the core radius, λ is the wavelength, n1 the refractive index of core and n2 the refractive index of the cladding. The ratio between the angular momentum and the phase velocity is the propagation constant (β) of the guided modes; it lies in the values of (n2k < β < n1k), where k = 2π λ . To find the Normalized propagation constant (b) [4] b = (neff 2 − n2 ) 1 2 ⁄ (n1 2 − n2 2) 1 2 ⁄ [0,1] (5) The change of the fundamental linearly polarized mode (LP01) propagating along the fiber is defined by the propagation constant β. It is suitable to define the effective refractive index for single-mode fiber as a ratio propagation constant of the fundamental mode to that of the wavenumber as shown in equation (6) [3]. neff = β k (6) Where: neff the range between n1 and n2 values. Dispersion In the optical fiber communication system, there are many problems such as dispersion in which the light pulse is spread out when it propagates through the channel of the fiber transmission. The greatest effect of dispersion occurs in the case of digital systems in the form of broadening in the width of transmitter pulses over the fiber; the broadening increased as the traveling distance in the fiber is increased. The negative phenomenon leads to inter symbol interference between traveled pulses and it leads to increase the errors. By increasing the length of the fiber, we get an increase in Dispersion; it is measured by the unit of time per unit of length, such as ns/km, ps/km, or time/km [5]. Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 127 In optical fiber communication, the total dispersion parameter is given by: D = − λ c dneff dλ2 (7) where c is light velocity and neff is the effective refractive index. There are many types of dispersion: 1Material dispersion 2Waveguide dispersion 3Profile dispersion Material dispersion The light emitted from a source with different wavelengths each wavelength propagates with different group velocity in fiber; this occurs due to the change in the refractive index through the fiber material. This effect is called material dispersion [6]. The pulse which is composed of different wavelengths also has the same effect as it propagates through the fiber. This broadening in the pulse depends upon the variation of the refractive index in the fiber along the transmission line [2]. In the dispersive medium, the phase velocity is different from group velocity depending on the amount of the dispersion in this media, when there is no dispersion. Vphase = ω k (8) νg = δω δβ (9) Where ω the angular frequency. The phase and group velocities are the same Vg = Vph. The amount of dispersion in the medium depends on the variation of refractive indices through the fiber which tends to spread out or delay the light wave depends on its wavelength; this is called the group velocity delay [4]. The group index shows the way of light behavior when the light pulses are considered the group index that become important because the light pulse broadening in time of the input signals of a different wavelength. N ≡ n − λ dn dλ (10) The plane wave propagated in the core dielectric medium of fiber which refractive index n(λ), which is infinitely extended in the direction of propagation , these wave can be used in the evalulation of the dispersion material in the fiber [7]. Dm = 1 c [ dN1 dλ A(V) + dN2 dλ 〈1 − A(V)〉] (11) Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 128 Where A(V) ≡ 1 2 [ d(bV) dV + b] (12) Dm is material dispersion, and A(V) is the fraction of LP01 mode power that is carried in the core. The total material dispersion in the fiber, which can be considered as sum material dispersion of both core and glad regin. Tg = 1 c {N1A(V) + N2[1 − A(V)] + N2Δ[A(V) − b]} (13) Figure (2), explains the relationship between the material dispersion and wavelength for pure silica. It is observed that the material dispersion tends to zero region around 1.3 μm. Waveguide Dispersion: The waveguide dispersion, in single-mode fiber, takes place as the light passes across the core and the cladding because the refractive index in the core is higher than the cladding [8]. The light moved through the core to cladding is more slowly, the difference between the refractive index of the core and the cladding is very small <<1. The different refractive index for the core and the cladding in the single-mode caused the spreading of the light at different speeds and led to the propagation delay; thus the waveguide dispersion. The chromatic dispersion defined by the combination of the material and waveguide dispersion. [9] Figure (2). The function between wavelength and material dispersion for silica [2]. Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 129 The material and waveguide dispersion is zero at wavelength λ = 1.3 μm, therefore, the best wavelength in terms of dispersion is λ = 1.3 μm where is called the zero-dispersion, but the best wavelength in terms of attenuation is λ = 1.55μm. The optical fibers' design with the zero-dispersion at a wavelength λ = 1.55μm which is called the dispersion-shifted fibers.\",\"PeriodicalId\":15610,\"journal\":{\"name\":\"Journal of Education Science\",\"volume\":\"30 1\",\"pages\":\"124-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Education Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33899/EDUSJ.2020.126908.1063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Education Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/EDUSJ.2020.126908.1063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在光通信区域(1.2 ~ 1.6)m中,研究了纤芯折射率、包层、纤芯半径等参数设计对单模光纤传输常数(β)的影响。对材料、波导和剖面色散进行了分析和研究。在1.55m波长处,选取相对折射率()为0.004、0.007、0.01的三种型号,芯半径为(3,4,5)m的三种型号进行计数。利用弱导向近似求解由麦克斯韦方程组导出的齐次波动方程,进行了数值模拟和数值模拟。利用MATLAB软件对模型进行了求解。不同相对折射率下,材料色散和剖面色散变化不显著,而波导色散受相对折射率变化的影响。波导色散随芯径的增大而增大,轮廓色散随芯径的增大而减小。增大堆芯直径对军事分散没有影响。关键词:单模光纤,传输常数,材料波导,色散。لالماعمريثأتنلاصئاصخىلعبلقلارطقويبسنلاراسكفايلةيئوضلاطمنلاةيداحأغابدلازاتممامس1 *،ديعسمناغفان2 1،2ءمايزيفلامسق،ةفرصلامولعللةيبرتلاةيلك،لصوملاةعماجقارعلا،لصوملا،ةصلاخلا:لماعملثمميمصتلاتاملعمريثأتةساردإىلعيئوضلافيللبلقلارطقفصنوفلاغلاوبلقلاراسكنثتبالأا(راشتنβ)ةيئوضلاتلااصتلاالاجميفطمنلاةيداحأةيئوضلافايللألم(1.2 - -1.6)米تيتلاإلكقيقدتوليلحتمت。ثحبلااذهيفاهئاصقتس،يبناجلاويجوملاويداملاحزقتلانمجذامنةثلاثلانملأ(يبسنلاراسكنلاالماعمريغتبسحةيئوضلافايل)(0.004,0.007,0.01)(يجوملالوطدنع1.55米فاصنأبطامنأةثلاثلو)أيئوضلافيللبلقلاراطق米(3、4、5ذخايتلا)مت。ةساردلايفتتلاداعمنمةدمتسملاةسناجتملاتاجوملاتلاداعملحلفيعضلاهيجوتلابيرقتىلعدامتعلاابةجذمنلاوةيددعلاةاكاحملابيترت教育和科学杂志》(ISSN 1812 - 125 x),卷:29日没有:2020(124 - 139)125年ةغلبهدادعامتجمانربمادختسابةساردلاهذهيفةجذمنلاتمتو。ليوسكامMATLAB。انظحلاثيحألايبناجلاويداملاحزقتلانريغتياريثكظوحلملكشبكلذكو。يئوضلافيلليبسنلاراسكنلاالماعمريغتبرثأتييجوملاحزقتلاامنيب،يبسنلاراسكنلاالماعمتاريغتللاحزقتلارثأتيلانيحيف。يئوضلافيللارطقةدايزبيبناجلاحزقتلالقيامنيبيئوضلافيللبلقلارطقةدايزبيبناجلاحزقتلادادزياميد。يئوضلافيللبلقلارطقةدايزب:ةلادلاتاملكلافايللااةيئوضلا。يبناجلاويجوملاويداملاحزقتلا،راشتنلااتباث،طمنلاةيداحأ介绍一步指数突变型纤维由圆柱表示被包层包围的波导电介质芯。该光纤的纤芯折射率大于包层折射率和半径(a),纤芯和包层折射率均匀,如式(1)所示,当r < a(纤芯)时n(r) = {n1,当r≥a(纤芯)时n(r) = n2。(1)阶跃折射率光纤在基本模型上有两种类型:●单模阶跃折射率。单模阶跃折射率单模阶跃折射率光纤的中心纤芯直径非常小,在(2-10)μm之间,非常小,该直径导致光线通过电缆的路径只有一条,而在多模光纤中,光线有多条路径,如图1所示。光纤各层之间的折射率之差称为相对折射率(∆);它非常小,可以表示为式(2)[1]:图(1)(a)多模阶跃折射率光纤;(b)单模阶跃折射率光纤[2,3]。《教育与科学杂志》(ISSN 1812-125X), Vol: 29, No: 4, 2020(124-139) 126∆= n1 2−n2 2 2n2 2(2)在弱导光纤(n1 × n2)中,相对折射率值:∆= n1−n2 n1(3)对于阶跃折射率,单模光纤必须满足(0 < V≤2.405)的条件。其中V是归一化频率,它是光纤中非常有用的参数,它用一个数字概括了光纤的所有重要特性。归一化频率用于计算可能模式的数量,并可用于计算截止波长。归一化频率关系由式(4)给出:V = 2πa λ√n1 2−n2 2(4)式中:a为芯半径,λ为波长,n1为芯折射率,n2为包层折射率。角动量与相速度之比为导模的传播常数(β);它在于(n2k < β < n1k)的值,其中k = 2π λ。为了求出归一化传播常数(b) [4] b = (neff 2−n2) 1 2⁄(n1 2−n2 2) 1 2⁄[0,1](5)基本线偏振模(LP01)沿光纤传播的变化用传播常数β来定义。 可以将单模光纤的有效折射率定义为基模传播常数与波数传播常数之比,如式(6)[3]所示。neff = β k(6)式中:neff为n1 ~ n2取值范围。色散在光纤通信系统中,存在着光脉冲在光纤传输通道中传播时产生的色散等问题。色散的最大影响发生在数字系统的情况下,其形式是光纤上发射机脉冲的宽度变宽;随着光纤中传输距离的增加,光纤的展宽也随之增加。负向现象会导致脉冲间的码间干扰,导致误差增大。通过增加光纤的长度,我们得到色散的增加;以单位长度对应的时间为单位,如ns/km、ps/km、time/km等[5]。在光纤通信中,总色散参数为:D =−λ c dneff dλ2(7),其中c为光速,neff为有效折射率。色散有很多种类型:1材料色散2波导色散3轮廓色散材料色散从不同波长的光源发出的光每个波长在光纤中以不同的群速度传播;这是由于光纤材料的折射率发生了变化。这种效应称为物质弥散[6]。由不同波长组成的脉冲在通过光纤传播时也具有相同的效果。脉冲的这种展宽取决于光纤沿传输线折射率的变化[2]。在色散介质中,当不存在色散时,根据介质中色散的大小,相速度与群速度不同。Vphase = ω k (8) νg = δω δβ(9)其中ω为角频率。相速度和群速度是相同的。介质中的色散量取决于通过光纤的折射率的变化,光纤倾向于扩散或延迟光波取决于其波长;这被称为群速度延迟[4]。群折射率显示了当光脉冲被认为是光的行为方式时,群折射率变得重要,因为光脉冲随着不同波长的输入信号的时间而展宽。N≡N−λ dn dλ(10)在光纤核心介质中传播的平面波,折射率为N (λ),在传播方向上无限扩展,这些波可用于光纤中色散物质的计算[7]。Dm = 1 c [dN1 dλ A(V) + dN2 dλ < 1−A(V) >] (11) Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020(124-139) 128其中A(V)≡12 [d(bV) dV + b] (12) Dm为材料色散,A(V)为芯内携带的LP01模式功率的分数。光纤中物质的总弥散度,可以认为是纤芯和欢欣区物质弥散度的总和。Tg = 1c {N1A(V) + N2[1−A(V)] + N2Δ[A(V)−b]}(13)图(2)解释了纯二氧化硅材料色散与波长之间的关系。在1.3 μm附近,材料色散趋于零。波导色散:在单模光纤中,由于纤芯的折射率比包层高,当光穿过纤芯和包层时发生波导色散[8]。光通过堆芯到达包层的速度较慢,堆芯和包层的折射率之差非常小<<1。单模下芯层和包层的折射率不同,导致光以不同的速度传播,导致传播延迟;因此波导色散。色散是材料色散和波导色散的组合。[9]图(2)二氧化硅的波长与材料色散的关系[2]。在λ = 1.3 μm波长处,材料和波导色散为零,因此色散的最佳波长为λ = 1.3 μm,称为零色散,而衰减的最佳波长为λ = 1.55μm。在波长λ = 1.55μm处设计零色散的光纤,称为色散位移光纤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The influence of relative refractive index and core diameter on properties of single-mode optical fiber.
In this research, the influence of the parameters design, such as the refractive index of the core, the cladding, and the radius of the core on propagation constant (β) of single-mode optical fiber in optical communication region (1.2-1.6) m have been studied and investigated. Material, waveguide, and profile dispersions are analyzed and investigated. Three models of optical fibers with different relative refractive indices () (0.004, 0.007, 0.01) at a wavelength equal 1.55 m, and three models of core radius (3,4,5) m are taken in the count. Numerical simulations and modeling are arranged depending on weakly guiding approximation for solving homogeneous wave equation derived from Maxwell’s equations. Our modeling has been solved by the aid of MATLAB software. Material and profile dispersion have no significant change for various relative refractive index, while waveguide dispersion is affected by the change of relative refractive index. the waveguide dispersion increased by increasing core diameter and the profile dispersion decreased as the core diameter increased. There is no effect on martial dispersion by increasing the core diameter. Keyword: Single-mode optical fiber, Propagation constant, Material Waveguide, and profile dispersion. لا لماعم ريثأت ن لا صئاصخ ىلع بلقلا رطقو يبسنلا راسك فايل ةيئوضلا طمنلا ةيداحأ غابدلا زاتمم امس 1 * ، ديعس مناغ فانم 2 1،2 ءايزيفلا مسق ، ةفرصلا مولعلل ةيبرتلا ةيلك ، لصوملا ةعماج قا رعلا ،لصوملا ، ةصلاخلا : لماعم لثم ميمصتلا تاملعم ريثأت ةسا رد إ ىلع يئوضلا فيلل بلقلا رطق فصنو فلاغلاو بلقلا راسكن ث تبا لأا ( راشتن β ) ةيئوضلا تلااصتلاا لاجم يف طمنلا ةيداحأ ةيئوضلا فايللأل (1.2-1.6) m مت يتلا إ لك قيقدتو ليلحت مت .ثحبلا اذه يف اهئاصقتس ،يبناجلاو يجوملاو يداملا حزقتلا نم جذامن ةثلاثل ا نم لأ ( يبسنلا راسكنلاا لماعم ريغت بسح ةيئوضلا فايل  ) (0.004, 0.007, 0.01) ( يجوملا لوط دنع 1.55 m فاصنأب طامنأ ةثلاثلو ) أ يئوضلا فيلل بلقلا راطق m ( 3,4,5 ذخا يتلا ) مت .ةسا ردلا يف ت تلاداعم نم ةدمتسملا ةسناجتملا تاجوملا تلاداعم لحل فيعضلا هيجوتلا بيرقت ىلع دامتعلااب ةجذمنلاو ةيددعلا ةاكاحملا بيترت Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 125 ةغلب هدادعا مت جمانرب مادختساب ةسا ردلا هذه يف ةجذمنلا تمتو .ليوسكام MATLAB . انظحلا ثيح أ لا يبناجلاو يداملا حزقتلا ن ريغتي ا ريثك ظوحلم لكشب كلذكو .يئوضلا فيلل يبسنلا راسكنلاا لماعم ريغتب رثأتي يجوملا حزقتلا امنيب ،يبسنلا راسكنلاا لماعم تا ريغتل لا حزقتلا رثأتي لا نيح يف .يئوضلا فيللا رطق ةدايزب يبناجلا حزقتلا لقي امنيب يئوضلا فيلل بلقلا رطق ةدايزب يبناجلا حزقتلا دادزي ام يد .يئوضلا فيلل بلقلا رطق ةدايزب :ةلادلا تاملكلا فايللاا ةيئوضلا .يبناجلاو يجوملاو يداملا حزقتلا ،راشتنلاا تباث ،طمنلا ةيداحأ Introduction Step Index The step-index fiber is represented by cylindrical waveguide dielectric core that is surrounded by the cladding. This fiber has a core refractive index higher than the cladding refractive index and radius (a). The core and cladding refracting indices are uniform as shown in equation (1). n(r) = { n1 when r < a (core) n2 when r ≥ a (cladding) (1) The step-index fiber has two types on the basic model: ● Single-mode step-index. ● Multimode step-index Single-mode step-index Single-mode step-index fiber has a very small central core of diameter which is between (2-10)μm , being very small, this diameter leads to one path for light rays through the cable while there is more than one path for light ray in multimode as shown in figure 1. The difference of refractive index between the layers in fiber is called the relative refraction index (∆); it is very small and can be written as in equation (2) [1]: Figure (1) The step-index fiber for (a) multimode step-index fiber; (b) single-mode step-index fiber [2, 3]. Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 126 ∆= n1 2 − n2 2 2n2 2 (2) In weakly guiding fiber ( n1 ≅ n2 ), the relative refractive index value: ∆= n1 − n2 n1 (3) For the step-index, the single-mode fiber must be satisfied with the condition ( 0 < V ≤ 2.405 ). Where V is Normalized frequency, it is the very beneficial parameter in optical fiber, which briefs all the important characteristics of the fiber in a single number. the normalized frequency used to calculate the number of possible modes and can be used to calculate the cut off wavelength. The relation normalized frequency is given by equation (4). V = 2πa λ √n1 2 − n2 2 (4) Where: a is the core radius, λ is the wavelength, n1 the refractive index of core and n2 the refractive index of the cladding. The ratio between the angular momentum and the phase velocity is the propagation constant (β) of the guided modes; it lies in the values of (n2k < β < n1k), where k = 2π λ . To find the Normalized propagation constant (b) [4] b = (neff 2 − n2 ) 1 2 ⁄ (n1 2 − n2 2) 1 2 ⁄ [0,1] (5) The change of the fundamental linearly polarized mode (LP01) propagating along the fiber is defined by the propagation constant β. It is suitable to define the effective refractive index for single-mode fiber as a ratio propagation constant of the fundamental mode to that of the wavenumber as shown in equation (6) [3]. neff = β k (6) Where: neff the range between n1 and n2 values. Dispersion In the optical fiber communication system, there are many problems such as dispersion in which the light pulse is spread out when it propagates through the channel of the fiber transmission. The greatest effect of dispersion occurs in the case of digital systems in the form of broadening in the width of transmitter pulses over the fiber; the broadening increased as the traveling distance in the fiber is increased. The negative phenomenon leads to inter symbol interference between traveled pulses and it leads to increase the errors. By increasing the length of the fiber, we get an increase in Dispersion; it is measured by the unit of time per unit of length, such as ns/km, ps/km, or time/km [5]. Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 127 In optical fiber communication, the total dispersion parameter is given by: D = − λ c dneff dλ2 (7) where c is light velocity and neff is the effective refractive index. There are many types of dispersion: 1Material dispersion 2Waveguide dispersion 3Profile dispersion Material dispersion The light emitted from a source with different wavelengths each wavelength propagates with different group velocity in fiber; this occurs due to the change in the refractive index through the fiber material. This effect is called material dispersion [6]. The pulse which is composed of different wavelengths also has the same effect as it propagates through the fiber. This broadening in the pulse depends upon the variation of the refractive index in the fiber along the transmission line [2]. In the dispersive medium, the phase velocity is different from group velocity depending on the amount of the dispersion in this media, when there is no dispersion. Vphase = ω k (8) νg = δω δβ (9) Where ω the angular frequency. The phase and group velocities are the same Vg = Vph. The amount of dispersion in the medium depends on the variation of refractive indices through the fiber which tends to spread out or delay the light wave depends on its wavelength; this is called the group velocity delay [4]. The group index shows the way of light behavior when the light pulses are considered the group index that become important because the light pulse broadening in time of the input signals of a different wavelength. N ≡ n − λ dn dλ (10) The plane wave propagated in the core dielectric medium of fiber which refractive index n(λ), which is infinitely extended in the direction of propagation , these wave can be used in the evalulation of the dispersion material in the fiber [7]. Dm = 1 c [ dN1 dλ A(V) + dN2 dλ 〈1 − A(V)〉] (11) Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 128 Where A(V) ≡ 1 2 [ d(bV) dV + b] (12) Dm is material dispersion, and A(V) is the fraction of LP01 mode power that is carried in the core. The total material dispersion in the fiber, which can be considered as sum material dispersion of both core and glad regin. Tg = 1 c {N1A(V) + N2[1 − A(V)] + N2Δ[A(V) − b]} (13) Figure (2), explains the relationship between the material dispersion and wavelength for pure silica. It is observed that the material dispersion tends to zero region around 1.3 μm. Waveguide Dispersion: The waveguide dispersion, in single-mode fiber, takes place as the light passes across the core and the cladding because the refractive index in the core is higher than the cladding [8]. The light moved through the core to cladding is more slowly, the difference between the refractive index of the core and the cladding is very small <<1. The different refractive index for the core and the cladding in the single-mode caused the spreading of the light at different speeds and led to the propagation delay; thus the waveguide dispersion. The chromatic dispersion defined by the combination of the material and waveguide dispersion. [9] Figure (2). The function between wavelength and material dispersion for silica [2]. Journal of Education and Science (ISSN 1812-125X), Vol: 29, No: 4, 2020 (124-139) 129 The material and waveguide dispersion is zero at wavelength λ = 1.3 μm, therefore, the best wavelength in terms of dispersion is λ = 1.3 μm where is called the zero-dispersion, but the best wavelength in terms of attenuation is λ = 1.55μm. The optical fibers' design with the zero-dispersion at a wavelength λ = 1.55μm which is called the dispersion-shifted fibers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENGEMBANGAN KEMAMPUAN VOCABULARY BAHASA INGGRIS MELALUI METODE AUDIO LISTENING PADA SISWA KELAS 1 SMPN JAYA ACEH JAYA KESIAPSIAGAAN KOMUNITAS SEKOLAH DALAM MENGHADAPI BENCANA GEMPA BUMI DAN TSUNAMI DI SMA NEGERI 1 BAITUSSALAM KABUPATEN ACEH BESAR IDENTIFIKASI KARAKTER MORFOLOGI DAN MANFAAT BUNGA KERTAS (Bougainvillea) DI DESA SENEREN, KECAMATAN PANTAN CUACA KABUPATEN GAYO LUES, ACEH PENINGKATAN KEMAMPUAN MENGANALISIS UNSUR INTRINSIK CERPEN MELALUI PEMBELAJARAN INKUIRI PADA SISWA KELAS XI MIA-2 PENERAPAN MODEL KOOPERATIF TIPE SNOWBALL THROWING UNTUK MENINGKATKAN PEMAHAMAN SISWA PADA MATERI TIRANI MATAHARI TERBIT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1