基于支持向量机人工鱼群算法的风电短期预测模型

Yang Zheng, Li Hong
{"title":"基于支持向量机人工鱼群算法的风电短期预测模型","authors":"Yang Zheng, Li Hong","doi":"10.1109/IICSPI.2018.8690469","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of wind power prediction and solve the parameter selection problem of support vector machine(SVM)model for the wind power prediction, the artificial fish swarm algorithm(AFSA) is proposed to look for the support vector machine’s optimal parameter of kernel function and the parameter of error penalty. The model of AFSA-SVW is established to predict the wind power with the numerical weather forecast(NWP) data after clustering analysis. Form the result of simulation experiment, it shows that the model of AFSA-SVW has a higher accuracy than the model of BP and the model of BP and the model of BP and the model of PSO-SVM in the short-term wind power prediction.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"12 1","pages":"570-574"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Model of Wind Power Short-Term Prediction Based on Artificial Fish Swarm Algorithm of Support Vector Machine\",\"authors\":\"Yang Zheng, Li Hong\",\"doi\":\"10.1109/IICSPI.2018.8690469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the accuracy of wind power prediction and solve the parameter selection problem of support vector machine(SVM)model for the wind power prediction, the artificial fish swarm algorithm(AFSA) is proposed to look for the support vector machine’s optimal parameter of kernel function and the parameter of error penalty. The model of AFSA-SVW is established to predict the wind power with the numerical weather forecast(NWP) data after clustering analysis. Form the result of simulation experiment, it shows that the model of AFSA-SVW has a higher accuracy than the model of BP and the model of BP and the model of BP and the model of PSO-SVM in the short-term wind power prediction.\",\"PeriodicalId\":6673,\"journal\":{\"name\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"volume\":\"12 1\",\"pages\":\"570-574\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI.2018.8690469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了提高风电功率预测的精度,解决支持向量机(SVM)模型用于风电功率预测的参数选择问题,提出了人工鱼群算法(AFSA)寻找支持向量机的最优核函数参数和误差惩罚参数。利用数值天气预报(NWP)数据进行聚类分析,建立了AFSA-SVW预测模型。仿真实验结果表明,AFSA-SVW模型在短期风电功率预测中具有比BP模型、BP模型、BP模型和PSO-SVM模型更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Model of Wind Power Short-Term Prediction Based on Artificial Fish Swarm Algorithm of Support Vector Machine
In order to improve the accuracy of wind power prediction and solve the parameter selection problem of support vector machine(SVM)model for the wind power prediction, the artificial fish swarm algorithm(AFSA) is proposed to look for the support vector machine’s optimal parameter of kernel function and the parameter of error penalty. The model of AFSA-SVW is established to predict the wind power with the numerical weather forecast(NWP) data after clustering analysis. Form the result of simulation experiment, it shows that the model of AFSA-SVW has a higher accuracy than the model of BP and the model of BP and the model of BP and the model of PSO-SVM in the short-term wind power prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Functional Safety Analysis and Design of Dual-Motor Hybrid Bus Clutch System Methods of Resource Allocation with Conflict Detection Exploration and Application of Sheet Metal Technology on Pit Package Repairing Study on Standardization of Electrolytic Trace Moisture Meter in Safety Construction of CNG Refueling Station The Research and Analysis of Big Data Application on Distribution Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1