太阳模拟人工光下近红外光对聚囊藻PCC6803光合作用的可能作用

Q3 Agricultural and Biological Sciences Environmental Control in Biology Pub Date : 2018-01-01 DOI:10.2525/ECB.56.17
Kota Oshita, Takuya Suzuki, T. Kawano
{"title":"太阳模拟人工光下近红外光对聚囊藻PCC6803光合作用的可能作用","authors":"Kota Oshita, Takuya Suzuki, T. Kawano","doi":"10.2525/ECB.56.17","DOIUrl":null,"url":null,"abstract":"Solar simulating light (SSL) has been widely used for evaluating the performance of photovoltaic cells and algal photosynthesis. Green plants and algae utilize chlorophylls, thus, the chlorophyll-targeting light components mostly contribute to photosynthesis. In contrast, near infrared (NIR) light hardly energizes photosynthesis. Since SSL spectrum covers a wide range of light from ultraviolet to NIR, we examined the roles of NIR components in SSL during photosynthetic O 2 evolution in Synechocystis (sp. PCC6803), by selectively and step-wisely eliminating the NIR using several NIR-cut filters. Here, the effects of intact SSL spectrum and the NIR-cut filtered SSL spectra (lacking NIR light greater than 690, 710, 750, or 810 nm) were examined. We observed that the 750 nm shortpass filter lowered the maximal photosynthetic velocity ( P max ), and concomitantly, the Michaelis constant-like value for light intensity ( K j ), whereas no significant change was observed with the 810 nm shortpass filter. We concluded that the 750 (cid:1) 810 nm band may contain the photosynthesis-stimulating NIR component acting differently from the known phenomenon (Emerson effect). In contrast, Synechocystis unexpectedly regained the photosynthetic performance by eliminating all range of NIR ( (cid:6) 710 nm), suggesting that 710 (cid:1) 750 nm far-red band corresponding to the absorption band for bacterial phytochrome is possibly inhibitory to photosynthesis.","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Possible Roles of Near-infrared Light on the Photosynthesis in Synechocystis sp. PCC6803 under Solar Simulating Artificial Light\",\"authors\":\"Kota Oshita, Takuya Suzuki, T. Kawano\",\"doi\":\"10.2525/ECB.56.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar simulating light (SSL) has been widely used for evaluating the performance of photovoltaic cells and algal photosynthesis. Green plants and algae utilize chlorophylls, thus, the chlorophyll-targeting light components mostly contribute to photosynthesis. In contrast, near infrared (NIR) light hardly energizes photosynthesis. Since SSL spectrum covers a wide range of light from ultraviolet to NIR, we examined the roles of NIR components in SSL during photosynthetic O 2 evolution in Synechocystis (sp. PCC6803), by selectively and step-wisely eliminating the NIR using several NIR-cut filters. Here, the effects of intact SSL spectrum and the NIR-cut filtered SSL spectra (lacking NIR light greater than 690, 710, 750, or 810 nm) were examined. We observed that the 750 nm shortpass filter lowered the maximal photosynthetic velocity ( P max ), and concomitantly, the Michaelis constant-like value for light intensity ( K j ), whereas no significant change was observed with the 810 nm shortpass filter. We concluded that the 750 (cid:1) 810 nm band may contain the photosynthesis-stimulating NIR component acting differently from the known phenomenon (Emerson effect). In contrast, Synechocystis unexpectedly regained the photosynthetic performance by eliminating all range of NIR ( (cid:6) 710 nm), suggesting that 710 (cid:1) 750 nm far-red band corresponding to the absorption band for bacterial phytochrome is possibly inhibitory to photosynthesis.\",\"PeriodicalId\":11762,\"journal\":{\"name\":\"Environmental Control in Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Control in Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2525/ECB.56.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Control in Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2525/ECB.56.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

摘要

太阳模拟光(Solar simulation light, SSL)已被广泛用于评价光伏电池和藻类光合作用的性能。绿色植物和藻类利用叶绿素,因此以叶绿素为目标的光组分主要参与光合作用。相比之下,近红外(NIR)光几乎不能激发光合作用。由于SSL光谱涵盖了从紫外线到近红外的广泛范围,我们研究了近红外成分在synnechocystis (sp. PCC6803)光合o2进化过程中SSL的作用,通过使用几个NIR-cut滤波器选择性地逐步消除近红外。本文研究了完整的SSL光谱和NIR切割过滤的SSL光谱(缺乏超过690、710、750和810 nm的近红外光)的影响。我们观察到750 nm的近通滤镜降低了最大光合速率(P max),同时降低了光强的Michaelis常数值(K j),而810 nm的近通滤镜没有显著变化。我们得出结论,750 (cid:1) 810 nm波段可能含有刺激光合作用的近红外成分,其作用与已知现象(爱默生效应)不同。相比之下,Synechocystis出人意料地通过消除近红外((cid:6) 710 nm)的所有范围来恢复光合作用,这表明与细菌光敏色素吸收带对应的710 (cid:1) 750 nm远红波段可能对光合作用有抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Possible Roles of Near-infrared Light on the Photosynthesis in Synechocystis sp. PCC6803 under Solar Simulating Artificial Light
Solar simulating light (SSL) has been widely used for evaluating the performance of photovoltaic cells and algal photosynthesis. Green plants and algae utilize chlorophylls, thus, the chlorophyll-targeting light components mostly contribute to photosynthesis. In contrast, near infrared (NIR) light hardly energizes photosynthesis. Since SSL spectrum covers a wide range of light from ultraviolet to NIR, we examined the roles of NIR components in SSL during photosynthetic O 2 evolution in Synechocystis (sp. PCC6803), by selectively and step-wisely eliminating the NIR using several NIR-cut filters. Here, the effects of intact SSL spectrum and the NIR-cut filtered SSL spectra (lacking NIR light greater than 690, 710, 750, or 810 nm) were examined. We observed that the 750 nm shortpass filter lowered the maximal photosynthetic velocity ( P max ), and concomitantly, the Michaelis constant-like value for light intensity ( K j ), whereas no significant change was observed with the 810 nm shortpass filter. We concluded that the 750 (cid:1) 810 nm band may contain the photosynthesis-stimulating NIR component acting differently from the known phenomenon (Emerson effect). In contrast, Synechocystis unexpectedly regained the photosynthetic performance by eliminating all range of NIR ( (cid:6) 710 nm), suggesting that 710 (cid:1) 750 nm far-red band corresponding to the absorption band for bacterial phytochrome is possibly inhibitory to photosynthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Control in Biology
Environmental Control in Biology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.00
自引率
0.00%
发文量
25
期刊最新文献
Conjugation of Glucaric Acid in Comparison to Quinic Acid by Caffeic Acid Allows for Enhanced Metabolite Diversification in Bush Tea (<i>Athrixia phylicoides</i> DC.) Extracts Post UV Light Exposure Effect of Citric Acid on the Organogenesis of <i>Cymbidium floribundum</i> Development of a Male-Sterile Line of Eggplant Utilizing the Cytoplasm of <i>Solanum aethiopicum</i> Gilo Group Continuous Measurement of Greenhouse Ventilation Rate in Summer and Autumn via Heat and Water Vapor Balance Methods Postharvest Shelf-life Extension of Button Mushroom (Agaricus bisporus L.) by Aloe vera Gel Coating Enriched with Basil Essential Oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1