{"title":"铁锰氧化物催化剂的制备及其理化性质","authors":"A. Ivanets","doi":"10.29235/1561-8323-2021-65-1-46-51","DOIUrl":null,"url":null,"abstract":"A Fe, Mn-oxide catalyst was obtained by impregnation of thermally activated dolomite granules with aqueous solutions of Fe(III) and Mn(II) sulfates followed by heat treatment. Its physicochemical properties were studied using differential thermal analysis, X-ray diffraction, low-temperature adsorption-desorption of nitrogen, and scanning electron microscopy. The high efficiency of Fe(II) ion oxidation in aqueous media in a flow-type catalytic reactor was shown, which makes the obtained catalyst promising for the deironization of artesian waters.","PeriodicalId":11227,"journal":{"name":"Doklady Akademii nauk","volume":"16 1","pages":"46-51"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preparation and physicochemical properties of the Fe, Mn-oxides catalyst\",\"authors\":\"A. Ivanets\",\"doi\":\"10.29235/1561-8323-2021-65-1-46-51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Fe, Mn-oxide catalyst was obtained by impregnation of thermally activated dolomite granules with aqueous solutions of Fe(III) and Mn(II) sulfates followed by heat treatment. Its physicochemical properties were studied using differential thermal analysis, X-ray diffraction, low-temperature adsorption-desorption of nitrogen, and scanning electron microscopy. The high efficiency of Fe(II) ion oxidation in aqueous media in a flow-type catalytic reactor was shown, which makes the obtained catalyst promising for the deironization of artesian waters.\",\"PeriodicalId\":11227,\"journal\":{\"name\":\"Doklady Akademii nauk\",\"volume\":\"16 1\",\"pages\":\"46-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Akademii nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2021-65-1-46-51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Akademii nauk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2021-65-1-46-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation and physicochemical properties of the Fe, Mn-oxides catalyst
A Fe, Mn-oxide catalyst was obtained by impregnation of thermally activated dolomite granules with aqueous solutions of Fe(III) and Mn(II) sulfates followed by heat treatment. Its physicochemical properties were studied using differential thermal analysis, X-ray diffraction, low-temperature adsorption-desorption of nitrogen, and scanning electron microscopy. The high efficiency of Fe(II) ion oxidation in aqueous media in a flow-type catalytic reactor was shown, which makes the obtained catalyst promising for the deironization of artesian waters.