{"title":"用多任务深度卷积神经网络改进多视图人脸检测","authors":"Cha Zhang, Zhengyou Zhang","doi":"10.1109/WACV.2014.6835990","DOIUrl":null,"url":null,"abstract":"Multiview face detection is a challenging problem due to dramatic appearance changes under various pose, illumination and expression conditions. In this paper, we present a multi-task deep learning scheme to enhance the detection performance. More specifically, we build a deep convolutional neural network that can simultaneously learn the face/nonface decision, the face pose estimation problem, and the facial landmark localization problem. We show that such a multi-task learning scheme can further improve the classifier's accuracy. On the challenging FDDB data set, our detector achieves over 3% improvement in detection rate at the same false positive rate compared with other state-of-the-art methods.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"15 1","pages":"1036-1041"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"203","resultStr":"{\"title\":\"Improving multiview face detection with multi-task deep convolutional neural networks\",\"authors\":\"Cha Zhang, Zhengyou Zhang\",\"doi\":\"10.1109/WACV.2014.6835990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiview face detection is a challenging problem due to dramatic appearance changes under various pose, illumination and expression conditions. In this paper, we present a multi-task deep learning scheme to enhance the detection performance. More specifically, we build a deep convolutional neural network that can simultaneously learn the face/nonface decision, the face pose estimation problem, and the facial landmark localization problem. We show that such a multi-task learning scheme can further improve the classifier's accuracy. On the challenging FDDB data set, our detector achieves over 3% improvement in detection rate at the same false positive rate compared with other state-of-the-art methods.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"15 1\",\"pages\":\"1036-1041\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"203\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6835990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6835990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving multiview face detection with multi-task deep convolutional neural networks
Multiview face detection is a challenging problem due to dramatic appearance changes under various pose, illumination and expression conditions. In this paper, we present a multi-task deep learning scheme to enhance the detection performance. More specifically, we build a deep convolutional neural network that can simultaneously learn the face/nonface decision, the face pose estimation problem, and the facial landmark localization problem. We show that such a multi-task learning scheme can further improve the classifier's accuracy. On the challenging FDDB data set, our detector achieves over 3% improvement in detection rate at the same false positive rate compared with other state-of-the-art methods.