多孔膜催化膜反应器中乙苯脱氢的模拟

E. Shelepova, A. A. Vedyagin, I. Mishakov, A. Noskov
{"title":"多孔膜催化膜反应器中乙苯脱氢的模拟","authors":"E. Shelepova, A. A. Vedyagin, I. Mishakov, A. Noskov","doi":"10.2478/cse-2014-0001","DOIUrl":null,"url":null,"abstract":"Abstract The modeling of ethylbenzene dehydrogenation in a catalytic membrane reactor has been carried out for porous membrane by means of two-dimensional, non-isothermal stationary mathematical model. A mathematical model of the catalytic membrane reactor was applied, in order to study the effects of transport properties of the porous membrane on process performance. The performed modeling of the heat and mass transfer processes within the porous membrane, allowed us to estimate the efficiency of its use in membrane reactors, in comparison with a dense membrane (with additional oxidation of the hydrogen in shell side). The use of a porous ceramic membrane was found to cause an increase of the ethylbenzene conversion at 600°C, up to 93 %, while the conversion in the case of conventional reactor was 67%. In this work, we defined the key parameter values of porous membrane (pore diameter and thickness) for ethylbenzene dehydrogenation in catalytic membrane reactor, at which the highest conversion of ethylbenzene and styrene selectivity can be reached.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"79 1","pages":"1 - 9"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Modeling of ethylbenzene dehydrogenation in catalytic membrane reactor with porous membrane\",\"authors\":\"E. Shelepova, A. A. Vedyagin, I. Mishakov, A. Noskov\",\"doi\":\"10.2478/cse-2014-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The modeling of ethylbenzene dehydrogenation in a catalytic membrane reactor has been carried out for porous membrane by means of two-dimensional, non-isothermal stationary mathematical model. A mathematical model of the catalytic membrane reactor was applied, in order to study the effects of transport properties of the porous membrane on process performance. The performed modeling of the heat and mass transfer processes within the porous membrane, allowed us to estimate the efficiency of its use in membrane reactors, in comparison with a dense membrane (with additional oxidation of the hydrogen in shell side). The use of a porous ceramic membrane was found to cause an increase of the ethylbenzene conversion at 600°C, up to 93 %, while the conversion in the case of conventional reactor was 67%. In this work, we defined the key parameter values of porous membrane (pore diameter and thickness) for ethylbenzene dehydrogenation in catalytic membrane reactor, at which the highest conversion of ethylbenzene and styrene selectivity can be reached.\",\"PeriodicalId\":9642,\"journal\":{\"name\":\"Catalysis for Sustainable Energy\",\"volume\":\"79 1\",\"pages\":\"1 - 9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cse-2014-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cse-2014-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

摘要采用二维非等温稳态数学模型对多孔膜催化膜反应器中乙苯脱氢过程进行了建模。建立了催化膜反应器的数学模型,研究了多孔膜的输运特性对催化膜反应器性能的影响。对多孔膜内的传热和传质过程进行建模,使我们能够估计其在膜反应器中的使用效率,与致密膜(壳侧氢的额外氧化)进行比较。使用多孔陶瓷膜可使乙苯在600℃时的转化率提高93%,而常规反应器的转化率为67%。本文确定了催化膜反应器中乙苯脱氢的孔膜关键参数值(孔径和厚度),在此条件下,乙苯的转化率和苯乙烯的选择性均可达到最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of ethylbenzene dehydrogenation in catalytic membrane reactor with porous membrane
Abstract The modeling of ethylbenzene dehydrogenation in a catalytic membrane reactor has been carried out for porous membrane by means of two-dimensional, non-isothermal stationary mathematical model. A mathematical model of the catalytic membrane reactor was applied, in order to study the effects of transport properties of the porous membrane on process performance. The performed modeling of the heat and mass transfer processes within the porous membrane, allowed us to estimate the efficiency of its use in membrane reactors, in comparison with a dense membrane (with additional oxidation of the hydrogen in shell side). The use of a porous ceramic membrane was found to cause an increase of the ethylbenzene conversion at 600°C, up to 93 %, while the conversion in the case of conventional reactor was 67%. In this work, we defined the key parameter values of porous membrane (pore diameter and thickness) for ethylbenzene dehydrogenation in catalytic membrane reactor, at which the highest conversion of ethylbenzene and styrene selectivity can be reached.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study of fast pyrolysis of plant biomass assisted by the conversion of volatile products using Fe(Co, Ni)/ZSM-5 catalysts Solid-Solutions as Supports and Robust Photocatalysts and Electrocatalysts: A Review Alkali Lignin Catalytic Hydrogenolysis with Biofuel Production Hydrogen Production from Catalytic Polyethylene Terephthalate Waste Reforming Reaction, an overview Hydrogen-Free Deoxygenation of Bio-Oil Model Compounds over Sulfur-Free Polymer Supported Catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1