基于DVFS的深度学习pareto最优架构的设计空间探索

G. Santoro, M. Casu, Valentino Peluso, A. Calimera, M. Alioto
{"title":"基于DVFS的深度学习pareto最优架构的设计空间探索","authors":"G. Santoro, M. Casu, Valentino Peluso, A. Calimera, M. Alioto","doi":"10.1109/ISCAS.2018.8351685","DOIUrl":null,"url":null,"abstract":"Specialized computing engines are required to accelerate the execution of Deep Learning (DL) algorithms in an energy-efficient way. To adapt the processing throughput of these accelerators to the workload requirements while saving power, Dynamic Voltage and Frequency Scaling (DVFS) seems the natural solution. However, DL workloads need to frequently access the off-chip memory, which tends to make the performance of these accelerators memory-bound rather than computation-bound, hence reducing the effectiveness of DVFS. In this work we use a performance-power analytical model fitted on a parametrized implementation of a DL accelerator in a 28-nm FDSOI technology to explore a large design space and to obtain the Pareto points that maximize the effectiveness of DVFS in the sub-space of throughput and energy efficiency. In our model we consider the impact on performance and power of the off-chip memory using real data of a commercial low-power DRAM.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"176 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Design-Space Exploration of Pareto-Optimal Architectures for Deep Learning with DVFS\",\"authors\":\"G. Santoro, M. Casu, Valentino Peluso, A. Calimera, M. Alioto\",\"doi\":\"10.1109/ISCAS.2018.8351685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specialized computing engines are required to accelerate the execution of Deep Learning (DL) algorithms in an energy-efficient way. To adapt the processing throughput of these accelerators to the workload requirements while saving power, Dynamic Voltage and Frequency Scaling (DVFS) seems the natural solution. However, DL workloads need to frequently access the off-chip memory, which tends to make the performance of these accelerators memory-bound rather than computation-bound, hence reducing the effectiveness of DVFS. In this work we use a performance-power analytical model fitted on a parametrized implementation of a DL accelerator in a 28-nm FDSOI technology to explore a large design space and to obtain the Pareto points that maximize the effectiveness of DVFS in the sub-space of throughput and energy efficiency. In our model we consider the impact on performance and power of the off-chip memory using real data of a commercial low-power DRAM.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"176 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

需要专门的计算引擎以节能的方式加速深度学习(DL)算法的执行。为了使这些加速器的处理吞吐量适应工作负载要求,同时节省功率,动态电压和频率缩放(DVFS)似乎是自然的解决方案。然而,DL工作负载需要频繁访问片外内存,这往往会使这些加速器的性能受到内存而不是计算的限制,从而降低了DVFS的有效性。在这项工作中,我们使用了一个性能功率分析模型,该模型拟合了28纳米FDSOI技术中DL加速器的参数化实现,以探索一个大的设计空间,并获得在吞吐量和能源效率子空间中最大化DVFS有效性的帕累托点。在我们的模型中,我们使用商用低功耗DRAM的真实数据来考虑对片外存储器性能和功耗的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design-Space Exploration of Pareto-Optimal Architectures for Deep Learning with DVFS
Specialized computing engines are required to accelerate the execution of Deep Learning (DL) algorithms in an energy-efficient way. To adapt the processing throughput of these accelerators to the workload requirements while saving power, Dynamic Voltage and Frequency Scaling (DVFS) seems the natural solution. However, DL workloads need to frequently access the off-chip memory, which tends to make the performance of these accelerators memory-bound rather than computation-bound, hence reducing the effectiveness of DVFS. In this work we use a performance-power analytical model fitted on a parametrized implementation of a DL accelerator in a 28-nm FDSOI technology to explore a large design space and to obtain the Pareto points that maximize the effectiveness of DVFS in the sub-space of throughput and energy efficiency. In our model we consider the impact on performance and power of the off-chip memory using real data of a commercial low-power DRAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1