{"title":"高维的样本和计算效率随机克里格","authors":"Liang Ding, Xiaowei Zhang","doi":"10.1287/opre.2022.2367","DOIUrl":null,"url":null,"abstract":"High-dimensional Simulation Metamodeling Stochastic kriging has been widely employed for simulation metamodeling to predict the response surface of complex simulation models. However, its use is limited to cases where the design space is low-dimensional because the sample complexity (i.e., the number of design points required to produce an accurate prediction) grows exponentially in the dimensionality of the design space. The large sample size results in both a prohibitive sample cost for running the simulation model and a severe computational challenge due to the need to invert large covariance matrices. To address this long-standing challenge, Liang Ding and Xiaowei Zhang, in their recent paper “Sample and Computationally Efficient Stochastic Kriging in High Dimensions”, develop a novel methodology — based on tensor Markov kernels and sparse grid experimental designs — that dramatically alleviates the curse of dimensionality. The proposed methodology has theoretical guarantees on both sample complexity and computational complexity and shows outstanding performance in numerical problems of as high as 16,675 dimensions.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"85 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sample and Computationally Efficient Stochastic Kriging in High Dimensions\",\"authors\":\"Liang Ding, Xiaowei Zhang\",\"doi\":\"10.1287/opre.2022.2367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-dimensional Simulation Metamodeling Stochastic kriging has been widely employed for simulation metamodeling to predict the response surface of complex simulation models. However, its use is limited to cases where the design space is low-dimensional because the sample complexity (i.e., the number of design points required to produce an accurate prediction) grows exponentially in the dimensionality of the design space. The large sample size results in both a prohibitive sample cost for running the simulation model and a severe computational challenge due to the need to invert large covariance matrices. To address this long-standing challenge, Liang Ding and Xiaowei Zhang, in their recent paper “Sample and Computationally Efficient Stochastic Kriging in High Dimensions”, develop a novel methodology — based on tensor Markov kernels and sparse grid experimental designs — that dramatically alleviates the curse of dimensionality. The proposed methodology has theoretical guarantees on both sample complexity and computational complexity and shows outstanding performance in numerical problems of as high as 16,675 dimensions.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2022.2367\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2022.2367","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Sample and Computationally Efficient Stochastic Kriging in High Dimensions
High-dimensional Simulation Metamodeling Stochastic kriging has been widely employed for simulation metamodeling to predict the response surface of complex simulation models. However, its use is limited to cases where the design space is low-dimensional because the sample complexity (i.e., the number of design points required to produce an accurate prediction) grows exponentially in the dimensionality of the design space. The large sample size results in both a prohibitive sample cost for running the simulation model and a severe computational challenge due to the need to invert large covariance matrices. To address this long-standing challenge, Liang Ding and Xiaowei Zhang, in their recent paper “Sample and Computationally Efficient Stochastic Kriging in High Dimensions”, develop a novel methodology — based on tensor Markov kernels and sparse grid experimental designs — that dramatically alleviates the curse of dimensionality. The proposed methodology has theoretical guarantees on both sample complexity and computational complexity and shows outstanding performance in numerical problems of as high as 16,675 dimensions.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.