{"title":"中试喷油时机对生物柴油-压缩天然气双燃料发动机高负荷燃烧过程及废气排放的影响","authors":"A. Trihatmojo, Dori Yuvenda, B. Sudarmanta","doi":"10.1063/1.5138286","DOIUrl":null,"url":null,"abstract":"Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ATDC with advanced the time of pilot injection in dual-fuel mode. However, HRR slightly increases by 4.79% at high load. The lower exhaust emissions can be achieved with advanced the time of pilot injection -17° CA ATDC at high load.Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ...","PeriodicalId":22239,"journal":{"name":"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The effects of pilot injection timing on the combustion process and exhaust emissions in dual-fuel diesel engine using biodiesel-CNG at high load\",\"authors\":\"A. Trihatmojo, Dori Yuvenda, B. Sudarmanta\",\"doi\":\"10.1063/1.5138286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ATDC with advanced the time of pilot injection in dual-fuel mode. However, HRR slightly increases by 4.79% at high load. The lower exhaust emissions can be achieved with advanced the time of pilot injection -17° CA ATDC at high load.Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ...\",\"PeriodicalId\":22239,\"journal\":{\"name\":\"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5138286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5138286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effects of pilot injection timing on the combustion process and exhaust emissions in dual-fuel diesel engine using biodiesel-CNG at high load
Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ATDC with advanced the time of pilot injection in dual-fuel mode. However, HRR slightly increases by 4.79% at high load. The lower exhaust emissions can be achieved with advanced the time of pilot injection -17° CA ATDC at high load.Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ...