中试喷油时机对生物柴油-压缩天然气双燃料发动机高负荷燃烧过程及废气排放的影响

A. Trihatmojo, Dori Yuvenda, B. Sudarmanta
{"title":"中试喷油时机对生物柴油-压缩天然气双燃料发动机高负荷燃烧过程及废气排放的影响","authors":"A. Trihatmojo, Dori Yuvenda, B. Sudarmanta","doi":"10.1063/1.5138286","DOIUrl":null,"url":null,"abstract":"Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ATDC with advanced the time of pilot injection in dual-fuel mode. However, HRR slightly increases by 4.79% at high load. The lower exhaust emissions can be achieved with advanced the time of pilot injection -17° CA ATDC at high load.Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ...","PeriodicalId":22239,"journal":{"name":"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The effects of pilot injection timing on the combustion process and exhaust emissions in dual-fuel diesel engine using biodiesel-CNG at high load\",\"authors\":\"A. Trihatmojo, Dori Yuvenda, B. Sudarmanta\",\"doi\":\"10.1063/1.5138286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ATDC with advanced the time of pilot injection in dual-fuel mode. However, HRR slightly increases by 4.79% at high load. The lower exhaust emissions can be achieved with advanced the time of pilot injection -17° CA ATDC at high load.Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ...\",\"PeriodicalId\":22239,\"journal\":{\"name\":\"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5138286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 4TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, HEALTH, AND MEDICAL DEVICES: Proceedings of the International Symposium of Biomedical Engineering (ISBE) 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5138286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

生物柴油和压缩天然气(CNG)是可用于双燃料发动机的替代燃料。在本研究中,生物柴油作为燃烧先导,CNG作为替代燃料注入进气过程。在双燃料燃烧过程中,先导喷射正时对控制初始燃烧具有重要作用。这是由于双燃料发动机的点火延迟时间比单燃料发动机长。发动机保持在每分钟2000转的恒定转速,并被赋予高负荷。单燃料模式采用-13°CA ATDC标准喷射时间。在-11°CA至-19°CA的ATDC范围内,双燃料发动机的先导喷射时间在-2°CA的步骤中变化,以研究燃烧过程和废气排放。结果表明,双燃料模式下,驾驶员喷射标准时间下的气缸压力和热释放率(HRR)大于单燃料模式。双燃料模式下,随着先导喷射时间的提前,缸压和峰值压力在10 ~ 15°CA ATDC范围内提高了21.46%。然而,在高负载下,HRR略微增加了4.79%。在高负荷工况下,提前先导喷射时间(-17°CA ATDC)可实现较低的尾气排放。生物柴油和压缩天然气(CNG)是可用于双燃料发动机的替代燃料。在本研究中,生物柴油作为燃烧先导,CNG作为替代燃料注入进气过程。在双燃料燃烧过程中,先导喷射正时对控制初始燃烧具有重要作用。这是由于双燃料发动机的点火延迟时间比单燃料发动机长。发动机保持在每分钟2000转的恒定转速,并被赋予高负荷。单燃料模式采用-13°CA ATDC标准喷射时间。在-11°CA至-19°CA的ATDC范围内,双燃料发动机的先导喷射时间在-2°CA的步骤中变化,以研究燃烧过程和废气排放。结果表明,双燃料模式下,驾驶员喷射标准时间下的气缸压力和热释放率(HRR)大于单燃料模式。在10 ~ 15°CA范围内,气缸压力增加了21.46%,峰值压力增加了21.46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of pilot injection timing on the combustion process and exhaust emissions in dual-fuel diesel engine using biodiesel-CNG at high load
Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ATDC with advanced the time of pilot injection in dual-fuel mode. However, HRR slightly increases by 4.79% at high load. The lower exhaust emissions can be achieved with advanced the time of pilot injection -17° CA ATDC at high load.Biodiesel and compressed natural gas (CNG) are alternative fuels that can be used in the dual-fuel engine. In this research, Biodiesel was used as a combustion pilot and CNG was applied as a substitution fuel injected at the intake process. The pilot injection timing has an important role in controlling the initial combustion of dual-fuel combustion. It is caused by the ignition delay of dual-fuel engines longer than single-fuel engines. The engine was kept at a constant speed of 2000 rpm and was given a high load. The single fuel mode used standard injection time of -13 °CA ATDC. The time of pilot injection in the dual-fuel engine was varied from -11 to -19 °CA ATDC in steps of -2 °CA to investigate the combustion process and exhaust emissions. The results show that dual-fuel mode with the standard time of pilot injection produces the cylinder pressure and heat release rate (HRR) greater than the single-fuel mode. Moreover, cylinder pressure increases 21.46% and peak pressure in the range of 10 – 15 °CA ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of tools utilization monitoring system on labor-intensive manufacturing industries Topology optimization on geometry of 3D printed “Impulse RC Alien 4 Inch” racing quadcopter frame with polylactic acid material Design and analysis of regenerative shock absorber using ball screw mechanism for vehicle suspension Effect of Sundanese music on daytime sleep quality based on EEG signal Static analysis of an energy storage and return (ESAR) prosthetic foot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1