Jacob Erlikhman, P. Krogen, P. Srinivasan, W. Hettel, P. Meinhold, P. Lubin
{"title":"包括衍射光学在内的大孔径相控激光阵列光学系统","authors":"Jacob Erlikhman, P. Krogen, P. Srinivasan, W. Hettel, P. Meinhold, P. Lubin","doi":"10.1117/12.2528089","DOIUrl":null,"url":null,"abstract":"Directed energy propulsion for interstellar travel has been proposed as an ideal method for reaching appreciable speeds relative to the speed of light: 0.2c. However, the amount of energy required necessitates a large aperture, on the order of kilometers, while mitigation of atmospheric perturbations requires a discretization of the aperture into many individual laser elements. The use of fiber lasers for these elements obligates mode-matching the fiber to the desired 10 cm aperture for a collimated beam. Various collimation systems were designed and compared. A 3-lens system with one achromat and two aspheric lenses, with two of the lenses used as a Keplerian telescope to achieve a system-shortening effect was analyzed. A similar system made with a plano-convex lens replacing the large-aperture aspheric lens with two additional compensating lenses was compared. A single diffractive optic operating at F/8 was likewise considered. The optical performance of these systems was compared, as was the cost-effectiveness. Scalability to millions of elements was required, so cost-per-system was a crucial consideration factor. Possible manufacturing processes for a diffractive system were investigated, and stamping processes for replication were analyzed to determine the possibility of replication of such an optic reliably, cheaply, and with acceptable results.","PeriodicalId":10843,"journal":{"name":"Current Developments in Lens Design and Optical Engineering XX","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optical systems for large-aperture phased laser array including diffractive optics\",\"authors\":\"Jacob Erlikhman, P. Krogen, P. Srinivasan, W. Hettel, P. Meinhold, P. Lubin\",\"doi\":\"10.1117/12.2528089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directed energy propulsion for interstellar travel has been proposed as an ideal method for reaching appreciable speeds relative to the speed of light: 0.2c. However, the amount of energy required necessitates a large aperture, on the order of kilometers, while mitigation of atmospheric perturbations requires a discretization of the aperture into many individual laser elements. The use of fiber lasers for these elements obligates mode-matching the fiber to the desired 10 cm aperture for a collimated beam. Various collimation systems were designed and compared. A 3-lens system with one achromat and two aspheric lenses, with two of the lenses used as a Keplerian telescope to achieve a system-shortening effect was analyzed. A similar system made with a plano-convex lens replacing the large-aperture aspheric lens with two additional compensating lenses was compared. A single diffractive optic operating at F/8 was likewise considered. The optical performance of these systems was compared, as was the cost-effectiveness. Scalability to millions of elements was required, so cost-per-system was a crucial consideration factor. Possible manufacturing processes for a diffractive system were investigated, and stamping processes for replication were analyzed to determine the possibility of replication of such an optic reliably, cheaply, and with acceptable results.\",\"PeriodicalId\":10843,\"journal\":{\"name\":\"Current Developments in Lens Design and Optical Engineering XX\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Developments in Lens Design and Optical Engineering XX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2528089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Developments in Lens Design and Optical Engineering XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2528089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical systems for large-aperture phased laser array including diffractive optics
Directed energy propulsion for interstellar travel has been proposed as an ideal method for reaching appreciable speeds relative to the speed of light: 0.2c. However, the amount of energy required necessitates a large aperture, on the order of kilometers, while mitigation of atmospheric perturbations requires a discretization of the aperture into many individual laser elements. The use of fiber lasers for these elements obligates mode-matching the fiber to the desired 10 cm aperture for a collimated beam. Various collimation systems were designed and compared. A 3-lens system with one achromat and two aspheric lenses, with two of the lenses used as a Keplerian telescope to achieve a system-shortening effect was analyzed. A similar system made with a plano-convex lens replacing the large-aperture aspheric lens with two additional compensating lenses was compared. A single diffractive optic operating at F/8 was likewise considered. The optical performance of these systems was compared, as was the cost-effectiveness. Scalability to millions of elements was required, so cost-per-system was a crucial consideration factor. Possible manufacturing processes for a diffractive system were investigated, and stamping processes for replication were analyzed to determine the possibility of replication of such an optic reliably, cheaply, and with acceptable results.