一套评价墨西哥森林结构生态复杂性完整性的生态指标

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY Ecological Complexity Pub Date : 2022-06-01 DOI:10.1016/j.ecocom.2022.101001
Franz Mora
{"title":"一套评价墨西哥森林结构生态复杂性完整性的生态指标","authors":"Franz Mora","doi":"10.1016/j.ecocom.2022.101001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a conceptual framework for analyzing forest complexity as the combination of the variety of species and key structures that are associated with the composition, structure, and function of forest stands. Several spatial indicators have been developed to characterize the biodiversity, the structural complexity, and anthropogenic effects that can be observed in Mexican forests. By integrating several stand complexity attributes, the forest condition can be characterized as a function of species composition, stand structural attributes, and forest development. In addition, indicators of anthropogenic effects were also analyzed to identify their influence on forest eco-complexity, and therefore, on the current condition of forests. The results of applying this conceptual framework showed that Mexican forest are ecologically complex, with varying levels of anthropogenic impacts that modify the structural forest characteristics, particularly in tropical forests. The main factor explaining the current eco-complexity condition in tropical forests was associated with early stages of forest development, due to ecological degradation, and showed a generalized loss of attributes, particularly for stand complexity and stand development. In contrast, temperate forests exhibited better eco-complexity conditions, especially for those attributes that define forest stand occupancy and development. Mining activities, forest extraction as selective harvesting, forest fires, land use change, and road openings are critical human activities that directly affect forest structure and, ultimately, modify forest eco-complexity and integrity. This eco-complexity index derived for Mexican forests can be used to integrate measures of forest structure and functioning, and thereby better inform decision making and policy development.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"50 ","pages":"Article 101001"},"PeriodicalIF":3.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A suite of ecological indicators for evaluating the integrity of structural eco-complexity in Mexican forests\",\"authors\":\"Franz Mora\",\"doi\":\"10.1016/j.ecocom.2022.101001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a conceptual framework for analyzing forest complexity as the combination of the variety of species and key structures that are associated with the composition, structure, and function of forest stands. Several spatial indicators have been developed to characterize the biodiversity, the structural complexity, and anthropogenic effects that can be observed in Mexican forests. By integrating several stand complexity attributes, the forest condition can be characterized as a function of species composition, stand structural attributes, and forest development. In addition, indicators of anthropogenic effects were also analyzed to identify their influence on forest eco-complexity, and therefore, on the current condition of forests. The results of applying this conceptual framework showed that Mexican forest are ecologically complex, with varying levels of anthropogenic impacts that modify the structural forest characteristics, particularly in tropical forests. The main factor explaining the current eco-complexity condition in tropical forests was associated with early stages of forest development, due to ecological degradation, and showed a generalized loss of attributes, particularly for stand complexity and stand development. In contrast, temperate forests exhibited better eco-complexity conditions, especially for those attributes that define forest stand occupancy and development. Mining activities, forest extraction as selective harvesting, forest fires, land use change, and road openings are critical human activities that directly affect forest structure and, ultimately, modify forest eco-complexity and integrity. This eco-complexity index derived for Mexican forests can be used to integrate measures of forest structure and functioning, and thereby better inform decision making and policy development.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"50 \",\"pages\":\"Article 101001\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X2200023X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X2200023X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一个概念框架,将森林复杂性分析为与林分组成、结构和功能相关的物种多样性和关键结构的结合。已经制定了几个空间指标来描述在墨西哥森林中可以观察到的生物多样性、结构复杂性和人为影响。通过综合林分复杂性属性,可以将林分状况描述为物种组成、林分结构属性和森林发育的函数。此外,还分析了人为影响的指标,以确定它们对森林生态复杂性的影响,从而对森林现状的影响。应用这一概念框架的结果表明,墨西哥森林在生态上是复杂的,具有不同程度的改变结构森林特征的人为影响,特别是在热带森林中。解释当前热带森林生态复杂性状况的主要因素与森林发展的早期阶段有关,由于生态退化,并且表现出普遍的属性损失,特别是林分复杂性和林分发育。相比之下,温带森林表现出更好的生态复杂性条件,特别是那些定义林分占用和发展的属性。采矿活动、选择性采伐森林、森林火灾、土地利用变化和道路开放是直接影响森林结构并最终改变森林生态复杂性和完整性的关键人类活动。墨西哥森林的生态复杂性指数可用于综合森林结构和功能的措施,从而更好地为决策和政策制定提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A suite of ecological indicators for evaluating the integrity of structural eco-complexity in Mexican forests

This paper presents a conceptual framework for analyzing forest complexity as the combination of the variety of species and key structures that are associated with the composition, structure, and function of forest stands. Several spatial indicators have been developed to characterize the biodiversity, the structural complexity, and anthropogenic effects that can be observed in Mexican forests. By integrating several stand complexity attributes, the forest condition can be characterized as a function of species composition, stand structural attributes, and forest development. In addition, indicators of anthropogenic effects were also analyzed to identify their influence on forest eco-complexity, and therefore, on the current condition of forests. The results of applying this conceptual framework showed that Mexican forest are ecologically complex, with varying levels of anthropogenic impacts that modify the structural forest characteristics, particularly in tropical forests. The main factor explaining the current eco-complexity condition in tropical forests was associated with early stages of forest development, due to ecological degradation, and showed a generalized loss of attributes, particularly for stand complexity and stand development. In contrast, temperate forests exhibited better eco-complexity conditions, especially for those attributes that define forest stand occupancy and development. Mining activities, forest extraction as selective harvesting, forest fires, land use change, and road openings are critical human activities that directly affect forest structure and, ultimately, modify forest eco-complexity and integrity. This eco-complexity index derived for Mexican forests can be used to integrate measures of forest structure and functioning, and thereby better inform decision making and policy development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
期刊最新文献
Enhancing maximum sustainable yield in a patchy prey–predator environment A scale-invariant method for quantifying the regularity of environmental spatial patterns Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change Transitive and intransitive structures in competition-based ecological communities The central importance of the honeybee (Apis mellifera L.) within plant-bee interaction networks decreases along a Neotropical elevational gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1