{"title":"一套评价墨西哥森林结构生态复杂性完整性的生态指标","authors":"Franz Mora","doi":"10.1016/j.ecocom.2022.101001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a conceptual framework for analyzing forest complexity as the combination of the variety of species and key structures that are associated with the composition, structure, and function of forest stands. Several spatial indicators have been developed to characterize the biodiversity, the structural complexity, and anthropogenic effects that can be observed in Mexican forests. By integrating several stand complexity attributes, the forest condition can be characterized as a function of species composition, stand structural attributes, and forest development. In addition, indicators of anthropogenic effects were also analyzed to identify their influence on forest eco-complexity, and therefore, on the current condition of forests. The results of applying this conceptual framework showed that Mexican forest are ecologically complex, with varying levels of anthropogenic impacts that modify the structural forest characteristics, particularly in tropical forests. The main factor explaining the current eco-complexity condition in tropical forests was associated with early stages of forest development, due to ecological degradation, and showed a generalized loss of attributes, particularly for stand complexity and stand development. In contrast, temperate forests exhibited better eco-complexity conditions, especially for those attributes that define forest stand occupancy and development. Mining activities, forest extraction as selective harvesting, forest fires, land use change, and road openings are critical human activities that directly affect forest structure and, ultimately, modify forest eco-complexity and integrity. This eco-complexity index derived for Mexican forests can be used to integrate measures of forest structure and functioning, and thereby better inform decision making and policy development.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"50 ","pages":"Article 101001"},"PeriodicalIF":3.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A suite of ecological indicators for evaluating the integrity of structural eco-complexity in Mexican forests\",\"authors\":\"Franz Mora\",\"doi\":\"10.1016/j.ecocom.2022.101001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a conceptual framework for analyzing forest complexity as the combination of the variety of species and key structures that are associated with the composition, structure, and function of forest stands. Several spatial indicators have been developed to characterize the biodiversity, the structural complexity, and anthropogenic effects that can be observed in Mexican forests. By integrating several stand complexity attributes, the forest condition can be characterized as a function of species composition, stand structural attributes, and forest development. In addition, indicators of anthropogenic effects were also analyzed to identify their influence on forest eco-complexity, and therefore, on the current condition of forests. The results of applying this conceptual framework showed that Mexican forest are ecologically complex, with varying levels of anthropogenic impacts that modify the structural forest characteristics, particularly in tropical forests. The main factor explaining the current eco-complexity condition in tropical forests was associated with early stages of forest development, due to ecological degradation, and showed a generalized loss of attributes, particularly for stand complexity and stand development. In contrast, temperate forests exhibited better eco-complexity conditions, especially for those attributes that define forest stand occupancy and development. Mining activities, forest extraction as selective harvesting, forest fires, land use change, and road openings are critical human activities that directly affect forest structure and, ultimately, modify forest eco-complexity and integrity. This eco-complexity index derived for Mexican forests can be used to integrate measures of forest structure and functioning, and thereby better inform decision making and policy development.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"50 \",\"pages\":\"Article 101001\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X2200023X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X2200023X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
A suite of ecological indicators for evaluating the integrity of structural eco-complexity in Mexican forests
This paper presents a conceptual framework for analyzing forest complexity as the combination of the variety of species and key structures that are associated with the composition, structure, and function of forest stands. Several spatial indicators have been developed to characterize the biodiversity, the structural complexity, and anthropogenic effects that can be observed in Mexican forests. By integrating several stand complexity attributes, the forest condition can be characterized as a function of species composition, stand structural attributes, and forest development. In addition, indicators of anthropogenic effects were also analyzed to identify their influence on forest eco-complexity, and therefore, on the current condition of forests. The results of applying this conceptual framework showed that Mexican forest are ecologically complex, with varying levels of anthropogenic impacts that modify the structural forest characteristics, particularly in tropical forests. The main factor explaining the current eco-complexity condition in tropical forests was associated with early stages of forest development, due to ecological degradation, and showed a generalized loss of attributes, particularly for stand complexity and stand development. In contrast, temperate forests exhibited better eco-complexity conditions, especially for those attributes that define forest stand occupancy and development. Mining activities, forest extraction as selective harvesting, forest fires, land use change, and road openings are critical human activities that directly affect forest structure and, ultimately, modify forest eco-complexity and integrity. This eco-complexity index derived for Mexican forests can be used to integrate measures of forest structure and functioning, and thereby better inform decision making and policy development.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity