Fumihiko Asano, Masaki Yamakita, N. Kamamichi, Zhi-Wei Luo
{"title":"一种基于机械能约束的双足步行机器人步态生成方法","authors":"Fumihiko Asano, Masaki Yamakita, N. Kamamichi, Zhi-Wei Luo","doi":"10.1109/IRDS.2002.1041668","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel energy-based control law for biped robots based on an analysis of passive dynamic walking. Firstly we discuss the essence of dynamic walking using a passive walker on a gentle slope. In the second, we propose a simple and effective control law which imitates the energy behavior in every cycle considering the ZMP condition and other factors of the active walker. The control strategy is formed by the feature of mechanical energy dissipation and restoration. By the effect of the proposed method, the robot can exhibit natural and reasonable walk on a level ground without any gait design in advance. The validity of the proposed method is examined by numerical simulations and experiments.","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"13 1","pages":"2637-2644 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"A novel gait generation for biped walking robots based on mechanical energy constraint\",\"authors\":\"Fumihiko Asano, Masaki Yamakita, N. Kamamichi, Zhi-Wei Luo\",\"doi\":\"10.1109/IRDS.2002.1041668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel energy-based control law for biped robots based on an analysis of passive dynamic walking. Firstly we discuss the essence of dynamic walking using a passive walker on a gentle slope. In the second, we propose a simple and effective control law which imitates the energy behavior in every cycle considering the ZMP condition and other factors of the active walker. The control strategy is formed by the feature of mechanical energy dissipation and restoration. By the effect of the proposed method, the robot can exhibit natural and reasonable walk on a level ground without any gait design in advance. The validity of the proposed method is examined by numerical simulations and experiments.\",\"PeriodicalId\":74523,\"journal\":{\"name\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"13 1\",\"pages\":\"2637-2644 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRDS.2002.1041668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRDS.2002.1041668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel gait generation for biped walking robots based on mechanical energy constraint
This paper proposes a novel energy-based control law for biped robots based on an analysis of passive dynamic walking. Firstly we discuss the essence of dynamic walking using a passive walker on a gentle slope. In the second, we propose a simple and effective control law which imitates the energy behavior in every cycle considering the ZMP condition and other factors of the active walker. The control strategy is formed by the feature of mechanical energy dissipation and restoration. By the effect of the proposed method, the robot can exhibit natural and reasonable walk on a level ground without any gait design in advance. The validity of the proposed method is examined by numerical simulations and experiments.