从土壤中分离的产蛋白酶芽孢杆菌抑制金黄色葡萄球菌的生物膜形成

Q4 Pharmacology, Toxicology and Pharmaceutics Pharmaceutical Sciences Asia Pub Date : 2023-01-01 DOI:10.29090/psa.2023.02.22.326
Sheila Mantaring, Debrah Jannsen DJ Almazan, Stephen Kyle Arcan, Nathalie Noval, Aracelle Palanca, J. P. Jose, Reneelyn Danganan-Cutab, J. Guzman
{"title":"从土壤中分离的产蛋白酶芽孢杆菌抑制金黄色葡萄球菌的生物膜形成","authors":"Sheila Mantaring, Debrah Jannsen DJ Almazan, Stephen Kyle Arcan, Nathalie Noval, Aracelle Palanca, J. P. Jose, Reneelyn Danganan-Cutab, J. Guzman","doi":"10.29090/psa.2023.02.22.326","DOIUrl":null,"url":null,"abstract":"Pathogens form biofilms to increase their resistance to environmental stress and antibacterial compounds. The rhizosphere is a rich source of microorganisms producing industrially important compounds including those with antimicrobial and biofilm inhibitory activities. Four isolates from soil collected from Taguig City, Philippines, were subjected to phenotypic and genotypic characterization, screening for protease production, and biofilm inhibition assays. Colony morphology and microscopic analyses indicated the isolates were putative Bacillus species. Upon DNA extraction, 16S rRNA gene was amplified, and based on their sequences, the isolates were confirmed to be Bacillus spp. Isolate AHP was B. cereus , isolate DJA was Priestia megaterium , formerly known as B. megaterium and isolates SJS and SKA were Bacillus spp.—all of which produced protease. Although the cell-free supernatants (CFS) of the isolates did not inhibit the growth of Staphylococcus aureus 1258, Citrobacter freundii ATCC24864, Salmonella Typhimurium ATCC13311, Escherichia coli ATCC11229, and E. coli O157:H7, biofilm formation of S. aureus was inhibited by all CFS, with B. cereus AHP showing the highest biofilm inhibition at 46%, followed by Bacillus sp. SKA (39%), P. megaterium DJA (36%) , and Bacillus sp. SJS (31%). Even though further studies are warranted, the bioactivities of these isolates indicate potential use for pharmaceutical purposes due to their ability to produce protease and inhibition of biofilm formation of a common bacterial pathogen","PeriodicalId":19761,"journal":{"name":"Pharmaceutical Sciences Asia","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally-isolated protease-producing Bacillus spp. from soil inhibits biofilm formation of Staphylococcus aureus\",\"authors\":\"Sheila Mantaring, Debrah Jannsen DJ Almazan, Stephen Kyle Arcan, Nathalie Noval, Aracelle Palanca, J. P. Jose, Reneelyn Danganan-Cutab, J. Guzman\",\"doi\":\"10.29090/psa.2023.02.22.326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathogens form biofilms to increase their resistance to environmental stress and antibacterial compounds. The rhizosphere is a rich source of microorganisms producing industrially important compounds including those with antimicrobial and biofilm inhibitory activities. Four isolates from soil collected from Taguig City, Philippines, were subjected to phenotypic and genotypic characterization, screening for protease production, and biofilm inhibition assays. Colony morphology and microscopic analyses indicated the isolates were putative Bacillus species. Upon DNA extraction, 16S rRNA gene was amplified, and based on their sequences, the isolates were confirmed to be Bacillus spp. Isolate AHP was B. cereus , isolate DJA was Priestia megaterium , formerly known as B. megaterium and isolates SJS and SKA were Bacillus spp.—all of which produced protease. Although the cell-free supernatants (CFS) of the isolates did not inhibit the growth of Staphylococcus aureus 1258, Citrobacter freundii ATCC24864, Salmonella Typhimurium ATCC13311, Escherichia coli ATCC11229, and E. coli O157:H7, biofilm formation of S. aureus was inhibited by all CFS, with B. cereus AHP showing the highest biofilm inhibition at 46%, followed by Bacillus sp. SKA (39%), P. megaterium DJA (36%) , and Bacillus sp. SJS (31%). Even though further studies are warranted, the bioactivities of these isolates indicate potential use for pharmaceutical purposes due to their ability to produce protease and inhibition of biofilm formation of a common bacterial pathogen\",\"PeriodicalId\":19761,\"journal\":{\"name\":\"Pharmaceutical Sciences Asia\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Sciences Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29090/psa.2023.02.22.326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Sciences Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29090/psa.2023.02.22.326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

病原体形成生物膜以增强其对环境压力和抗菌化合物的抵抗力。根际是产生工业上重要化合物的微生物的丰富来源,包括那些具有抗菌和生物膜抑制活性的化合物。从菲律宾tagig市采集的4株分离株进行了表型和基因型鉴定、蛋白酶生产筛选和生物膜抑制试验。菌落形态和显微分析表明,分离物是假定的芽孢杆菌种。提取DNA,扩增16S rRNA基因,根据其序列确定分离物为芽孢杆菌属,分离物AHP为蜡样芽孢杆菌属,分离物DJA为巨型芽孢杆菌属,分离物SJS和SKA为芽孢杆菌属,均产生蛋白酶。虽然分离物的无细胞上清液(CFS)没有抑制金黄色葡萄球菌1258、弗氏柠檬酸杆菌ATCC24864、鼠伤寒沙门氏菌ATCC13311、大肠杆菌ATCC11229和大肠杆菌O157:H7的生长,但所有CFS都能抑制金黄色葡萄球菌的生物膜形成,其中蜡状芽孢杆菌AHP对生物膜的抑制作用最高,为46%,其次是芽孢杆菌SKA(39%)、巨型芽孢杆菌DJA(36%)和芽孢杆菌SJS(31%)。尽管需要进一步的研究,但这些分离物的生物活性表明,由于它们能够产生蛋白酶和抑制一种常见细菌病原体的生物膜形成,因此具有潜在的制药用途
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Locally-isolated protease-producing Bacillus spp. from soil inhibits biofilm formation of Staphylococcus aureus
Pathogens form biofilms to increase their resistance to environmental stress and antibacterial compounds. The rhizosphere is a rich source of microorganisms producing industrially important compounds including those with antimicrobial and biofilm inhibitory activities. Four isolates from soil collected from Taguig City, Philippines, were subjected to phenotypic and genotypic characterization, screening for protease production, and biofilm inhibition assays. Colony morphology and microscopic analyses indicated the isolates were putative Bacillus species. Upon DNA extraction, 16S rRNA gene was amplified, and based on their sequences, the isolates were confirmed to be Bacillus spp. Isolate AHP was B. cereus , isolate DJA was Priestia megaterium , formerly known as B. megaterium and isolates SJS and SKA were Bacillus spp.—all of which produced protease. Although the cell-free supernatants (CFS) of the isolates did not inhibit the growth of Staphylococcus aureus 1258, Citrobacter freundii ATCC24864, Salmonella Typhimurium ATCC13311, Escherichia coli ATCC11229, and E. coli O157:H7, biofilm formation of S. aureus was inhibited by all CFS, with B. cereus AHP showing the highest biofilm inhibition at 46%, followed by Bacillus sp. SKA (39%), P. megaterium DJA (36%) , and Bacillus sp. SJS (31%). Even though further studies are warranted, the bioactivities of these isolates indicate potential use for pharmaceutical purposes due to their ability to produce protease and inhibition of biofilm formation of a common bacterial pathogen
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Sciences Asia
Pharmaceutical Sciences Asia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
0.90
自引率
0.00%
发文量
59
期刊介绍: The Pharmaceutical Sciences Asia (PSA) journal is a double-blinded peer-reviewed journal in English published quarterly, by the Faculty of Pharmacy, Mahidol University, Thailand. The PSA journal is formerly known as Mahidol University Journal of Pharmaceutical Sciences and committed to the timely publication of innovative articles and reviews. This journal is available in both printed and electronic formats. The PSA journal aims at establishing a publishing house that is open to all. It aims to disseminate knowledge; provide a learned reference in the field; and establish channels of communication between academic and research expert, policy makers and executives in industry and investment institutions. The journal publishes research articles, review articles, and scientific commentaries on all aspects of the pharmaceutical sciences and multidisciplinary field in health professions and medicine. More specifically, the journal publishes research on all areas of pharmaceutical sciences and related disciplines: Clinical Pharmacy Drug Synthesis and Discovery Targeted-Drug Delivery Pharmaceutics Biopharmaceutical Sciences Phytopharmaceutical Sciences Pharmacology and Toxicology Pharmaceutical Chemistry Nutraceuticals and Functional Foods Natural Products Social, Economic, and Administrative Pharmacy Clinical Drug Evaluation and Drug Policy Making Antimicrobials, Resistance and Infection Control Pharmacokinetics and Pharmacodynamics.
期刊最新文献
Locally-isolated protease-producing Bacillus spp. from soil inhibits biofilm formation of Staphylococcus aureus Medication errors analysis in Asia and Australia: A systematic review The effect of different sweeteners on the free radical scavenging activities, alcohol contents, sugar reductions, and hedonic properties of green tea kombucha Development and validation of a GC-MS method for determination of amphetamine-type stimulants and ketamine in human hair Effect of zonisamide and Nigella sativa on blood-brain barrier permeability and neurological severity in traumatic brain injury-induced mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1