基于复合向量的支持向量机预测膜蛋白类型

Ting Wang, Xiuzhen Hu
{"title":"基于复合向量的支持向量机预测膜蛋白类型","authors":"Ting Wang, Xiuzhen Hu","doi":"10.1109/BMEI.2009.5305127","DOIUrl":null,"url":null,"abstract":"By using of the composite vector with increment of diversity and scoring function to express the information of sequence, a support vector machine (SVM) algorithm for predicting the eight types of membrane proteins is proposed. The overall jackknife success rate is 91.81% what is higher than other results. In order to evaluate the predictive method, the six types of membrane proteins are predicted by using our method. The better results are obtained.","PeriodicalId":6389,"journal":{"name":"2009 2nd International Conference on Biomedical Engineering and Informatics","volume":"193 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Membrane Protein Types by Using Support Vector Machine Based on Composite Vector\",\"authors\":\"Ting Wang, Xiuzhen Hu\",\"doi\":\"10.1109/BMEI.2009.5305127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using of the composite vector with increment of diversity and scoring function to express the information of sequence, a support vector machine (SVM) algorithm for predicting the eight types of membrane proteins is proposed. The overall jackknife success rate is 91.81% what is higher than other results. In order to evaluate the predictive method, the six types of membrane proteins are predicted by using our method. The better results are obtained.\",\"PeriodicalId\":6389,\"journal\":{\"name\":\"2009 2nd International Conference on Biomedical Engineering and Informatics\",\"volume\":\"193 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Conference on Biomedical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2009.5305127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2009.5305127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用多样性增量复合向量和评分函数表达序列信息,提出了一种预测8种膜蛋白的支持向量机算法。整体叠刀成功率为91.81%,高于其他结果。为了对预测方法进行评价,对6种膜蛋白进行了预测。取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Membrane Protein Types by Using Support Vector Machine Based on Composite Vector
By using of the composite vector with increment of diversity and scoring function to express the information of sequence, a support vector machine (SVM) algorithm for predicting the eight types of membrane proteins is proposed. The overall jackknife success rate is 91.81% what is higher than other results. In order to evaluate the predictive method, the six types of membrane proteins are predicted by using our method. The better results are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Approach for Blood Vessel Edge Detection in Retinal Images Skin Response During Irradiation by Intense Pulsed Light Based on Optical Imaging Technology and Histology Physical Properties of LYSO Scintillator for NN-PET Detectors A High Security Framework for SMS An Efficient Antenna Selection Algorithm for MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1