基于Prophet-BiLSTM的电动汽车充电负荷短期预测

Chenghan Li, Yipu Liao, Linhong Zou, R. Diao, Rongjia Sun, Huan Xie
{"title":"基于Prophet-BiLSTM的电动汽车充电负荷短期预测","authors":"Chenghan Li, Yipu Liao, Linhong Zou, R. Diao, Rongjia Sun, Huan Xie","doi":"10.1109/ITECAsia-Pacific56316.2022.9942039","DOIUrl":null,"url":null,"abstract":"The fast-growing charging load of electric vehicles (EVs) has created significant impact on the secure and economic operation of electric power grid. To effectively quantify future operational risks and optimize control actions of the grid, this paper presents a novel method of short-term forecasting of EV charging load using artificial intelligence algorithms. First, a Prophet model is trained to select key features affecting EV forecasting performance; then, a Bidirectional Long Short-Term Memory (BiLSTM) model is trained to provide high-accuracy forecasting model of EV charging load. The proposed method is tested on actual charging load data obtained from a large EV station in Southern China, and compared with state-of-the-art machine learning algorithms including the traditional Prophet, LSTM, ANN, CNN-LSTM, transformer and N-BEATS. The proposed method of Prophet-BiLSTM model demonstrates higher prediction accuracy.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"23 1","pages":"1-4"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Short-Term Forecasting of EV Charging Load Using Prophet-BiLSTM\",\"authors\":\"Chenghan Li, Yipu Liao, Linhong Zou, R. Diao, Rongjia Sun, Huan Xie\",\"doi\":\"10.1109/ITECAsia-Pacific56316.2022.9942039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fast-growing charging load of electric vehicles (EVs) has created significant impact on the secure and economic operation of electric power grid. To effectively quantify future operational risks and optimize control actions of the grid, this paper presents a novel method of short-term forecasting of EV charging load using artificial intelligence algorithms. First, a Prophet model is trained to select key features affecting EV forecasting performance; then, a Bidirectional Long Short-Term Memory (BiLSTM) model is trained to provide high-accuracy forecasting model of EV charging load. The proposed method is tested on actual charging load data obtained from a large EV station in Southern China, and compared with state-of-the-art machine learning algorithms including the traditional Prophet, LSTM, ANN, CNN-LSTM, transformer and N-BEATS. The proposed method of Prophet-BiLSTM model demonstrates higher prediction accuracy.\",\"PeriodicalId\":45126,\"journal\":{\"name\":\"Asia-Pacific Journal-Japan Focus\",\"volume\":\"23 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal-Japan Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9942039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9942039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 2

摘要

快速增长的电动汽车充电负荷对电网的安全和经济运行产生了重大影响。为有效量化未来电网运行风险,优化电网控制措施,提出了一种基于人工智能算法的电动汽车充电负荷短期预测方法。首先,对Prophet模型进行训练,选择影响电动汽车预测性能的关键特征;然后,训练双向长短期记忆(BiLSTM)模型,提供高精度的电动汽车充电负荷预测模型;通过对南方某大型电动汽车充电站的实际充电负荷数据进行测试,并与传统的Prophet、LSTM、ANN、CNN-LSTM、transformer、N-BEATS等最先进的机器学习算法进行比较。提出的Prophet-BiLSTM模型预测精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-Term Forecasting of EV Charging Load Using Prophet-BiLSTM
The fast-growing charging load of electric vehicles (EVs) has created significant impact on the secure and economic operation of electric power grid. To effectively quantify future operational risks and optimize control actions of the grid, this paper presents a novel method of short-term forecasting of EV charging load using artificial intelligence algorithms. First, a Prophet model is trained to select key features affecting EV forecasting performance; then, a Bidirectional Long Short-Term Memory (BiLSTM) model is trained to provide high-accuracy forecasting model of EV charging load. The proposed method is tested on actual charging load data obtained from a large EV station in Southern China, and compared with state-of-the-art machine learning algorithms including the traditional Prophet, LSTM, ANN, CNN-LSTM, transformer and N-BEATS. The proposed method of Prophet-BiLSTM model demonstrates higher prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
8
期刊最新文献
An Inertia Adjustment Control Strategy of Grid-Forming Electric Vehicle for V2G Application An Improved Control Strategy of PM-Assisted Synchronous Reluctance Machines Based on an Extended State Observer Comparison and evaluation of the thermal performance between SiC-MOSFET and Si-IGBT Analysis and Design of Passive Damping for LC-Equipped Permanent-Magnet Synchronous Machine Drive System Research on dynamic pricing strategy of electric material distribution vehicle based on master-slave game and multi-hot code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1