{"title":"基于扭转模式弯曲悬挂的压电陶瓷电动力无线电源接收器","authors":"M. A. Halim, J. Samman, S. Smith, D. Arnold","doi":"10.1109/PowerMEMS49317.2019.20515809768","DOIUrl":null,"url":null,"abstract":"This paper reports the design, fabrication and experimental characterization of an electrodynamic wireless power transmission (WPT) receiver that utilizes a meander-shaped suspension and two piezo-ceramic transducers to achieve up to 8.2 mW/cm$^{3}\\cdot$ mT2 normalized power density (NPD). The system operates at its torsion mode mechanical resonance of 211 Hz. The 2.5 cm3 prototype generates 3.3 mW average power (1.3 mW/cm3 power density) at a distance of 3 cm from a transmitter coil that is operating at the maximum allowable human exposure limit (a maximum 2 mTrms field generated at the center of the coil). Compared to prior works, the proposed design affords the use of multiple piezo transducers within a compact footprint while maintaining a form factor suitable for low-profile system implementation for bio-implantable and wearable applications.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"34 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Piezoceramic Electrodynamic Wireless Power Receiver Using Torsion Mode Meandering Suspension\",\"authors\":\"M. A. Halim, J. Samman, S. Smith, D. Arnold\",\"doi\":\"10.1109/PowerMEMS49317.2019.20515809768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the design, fabrication and experimental characterization of an electrodynamic wireless power transmission (WPT) receiver that utilizes a meander-shaped suspension and two piezo-ceramic transducers to achieve up to 8.2 mW/cm$^{3}\\\\cdot$ mT2 normalized power density (NPD). The system operates at its torsion mode mechanical resonance of 211 Hz. The 2.5 cm3 prototype generates 3.3 mW average power (1.3 mW/cm3 power density) at a distance of 3 cm from a transmitter coil that is operating at the maximum allowable human exposure limit (a maximum 2 mTrms field generated at the center of the coil). Compared to prior works, the proposed design affords the use of multiple piezo transducers within a compact footprint while maintaining a form factor suitable for low-profile system implementation for bio-implantable and wearable applications.\",\"PeriodicalId\":6648,\"journal\":{\"name\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"34 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS49317.2019.20515809768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.20515809768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Piezoceramic Electrodynamic Wireless Power Receiver Using Torsion Mode Meandering Suspension
This paper reports the design, fabrication and experimental characterization of an electrodynamic wireless power transmission (WPT) receiver that utilizes a meander-shaped suspension and two piezo-ceramic transducers to achieve up to 8.2 mW/cm$^{3}\cdot$ mT2 normalized power density (NPD). The system operates at its torsion mode mechanical resonance of 211 Hz. The 2.5 cm3 prototype generates 3.3 mW average power (1.3 mW/cm3 power density) at a distance of 3 cm from a transmitter coil that is operating at the maximum allowable human exposure limit (a maximum 2 mTrms field generated at the center of the coil). Compared to prior works, the proposed design affords the use of multiple piezo transducers within a compact footprint while maintaining a form factor suitable for low-profile system implementation for bio-implantable and wearable applications.