A. Fedorenko, N. Kachur, H. Dorozinska, G. Dorozinsky, V.P. Maslo, O. Sulima, T. Rudyk
{"title":"表面等离子体共振现象在控制悬浮液中的应用","authors":"A. Fedorenko, N. Kachur, H. Dorozinska, G. Dorozinsky, V.P. Maslo, O. Sulima, T. Rudyk","doi":"10.15407/spqeo26.01.084","DOIUrl":null,"url":null,"abstract":"Represented in this paper are the results of investigations aimed at checking up the capabilities of devices based on the surface plasmon resonance (SPR) phenomenon to be applied for studying the properties of water suspensions. As an example, the authors used here the suspensions of tooth pastes Sensodyne and Colgate in distilled water. For measurements, we used the SPR device Plasmon-71 operating in the near infrared spectral range. Results of these measurements were compared to those obtained using the spectrophotometric ones. The measured values of the sedimentation velocity obtained using both the applied methods confirmed availability to efficiently apply SPR devices for studying the opaque multi-component suspensions.","PeriodicalId":21598,"journal":{"name":"Semiconductor physics, quantum electronics and optoelectronics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the surface plasmon resonance phenomenon to controlling suspensions\",\"authors\":\"A. Fedorenko, N. Kachur, H. Dorozinska, G. Dorozinsky, V.P. Maslo, O. Sulima, T. Rudyk\",\"doi\":\"10.15407/spqeo26.01.084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Represented in this paper are the results of investigations aimed at checking up the capabilities of devices based on the surface plasmon resonance (SPR) phenomenon to be applied for studying the properties of water suspensions. As an example, the authors used here the suspensions of tooth pastes Sensodyne and Colgate in distilled water. For measurements, we used the SPR device Plasmon-71 operating in the near infrared spectral range. Results of these measurements were compared to those obtained using the spectrophotometric ones. The measured values of the sedimentation velocity obtained using both the applied methods confirmed availability to efficiently apply SPR devices for studying the opaque multi-component suspensions.\",\"PeriodicalId\":21598,\"journal\":{\"name\":\"Semiconductor physics, quantum electronics and optoelectronics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor physics, quantum electronics and optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/spqeo26.01.084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor physics, quantum electronics and optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/spqeo26.01.084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of the surface plasmon resonance phenomenon to controlling suspensions
Represented in this paper are the results of investigations aimed at checking up the capabilities of devices based on the surface plasmon resonance (SPR) phenomenon to be applied for studying the properties of water suspensions. As an example, the authors used here the suspensions of tooth pastes Sensodyne and Colgate in distilled water. For measurements, we used the SPR device Plasmon-71 operating in the near infrared spectral range. Results of these measurements were compared to those obtained using the spectrophotometric ones. The measured values of the sedimentation velocity obtained using both the applied methods confirmed availability to efficiently apply SPR devices for studying the opaque multi-component suspensions.