CdTe生长温度和ZnTe:Cu接触条件对CdTe器件性能的影响

J. Burst, W. Rance, T. Barnes, M. Reese, J. Li, D. Kuciauskas, M. Steiner, T. Gessert, K. Zhang, C. T. Hamilton, K. Fuller, B. Aitken, C. K. Kosik Williams
{"title":"CdTe生长温度和ZnTe:Cu接触条件对CdTe器件性能的影响","authors":"J. Burst, W. Rance, T. Barnes, M. Reese, J. Li, D. Kuciauskas, M. Steiner, T. Gessert, K. Zhang, C. T. Hamilton, K. Fuller, B. Aitken, C. K. Kosik Williams","doi":"10.1109/PVSC.2012.6317598","DOIUrl":null,"url":null,"abstract":"CdTe device performance is strongly dependent on the quality of the back contact and the ability of the back contact to introduce a copper doping profile in the CdTe layer itself. Copper-doped ZnTe (ZnTe:Cu) is a nearly ideal contact material for CdTe solar cells due to its work function and ability to source copper to CdTe. Most of the ZnTe:Cu studies in the past used CdTe grown at relatively low deposition temperatures (550°C and below). Here we investigate the use of ZnTe:Cu as a back contact for CdTe grown at temperatures up to 620°C. We observe a strong interplay between the CdTe absorber deposition conditions and optimized ZnTe:Cu contacting conditions. Device JV characteristics suggest that CdTe solar cells with absorber layers deposited by close-space sublimation (CSS) at high temperature, 600-620°C, are more robust to the back contact Cu doping level and contacting temperature than CdTe grown at lower temperatures. The implication for industrial processes is a ~1% absolute increase in device efficiency for devices in which the CdTe is deposited on PV glass at high temperature. Perhaps more importantly, this increased performance is maintained for a larger window of temperature and doping level of the ZnTe:Cu back contact. For devices with CdTe absorbers deposited at 600°C, device efficiency in excess of 13.5% is maintained for back contacts containing 2-5 wt.% Cu, and for contacting temperatures ranging from 300-360°C. Red-light bias quantum efficiency (QE) and capacitance-voltage (CV) measurements are used to probe the effect of the introduced copper doping profiles and net acceptor density to better understand how ZnTe:Cu sources influences the resulting CdTe device.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The effect of CdTe growth temperature and ZnTe:Cu contacting conditions on CdTe device performance\",\"authors\":\"J. Burst, W. Rance, T. Barnes, M. Reese, J. Li, D. Kuciauskas, M. Steiner, T. Gessert, K. Zhang, C. T. Hamilton, K. Fuller, B. Aitken, C. K. Kosik Williams\",\"doi\":\"10.1109/PVSC.2012.6317598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CdTe device performance is strongly dependent on the quality of the back contact and the ability of the back contact to introduce a copper doping profile in the CdTe layer itself. Copper-doped ZnTe (ZnTe:Cu) is a nearly ideal contact material for CdTe solar cells due to its work function and ability to source copper to CdTe. Most of the ZnTe:Cu studies in the past used CdTe grown at relatively low deposition temperatures (550°C and below). Here we investigate the use of ZnTe:Cu as a back contact for CdTe grown at temperatures up to 620°C. We observe a strong interplay between the CdTe absorber deposition conditions and optimized ZnTe:Cu contacting conditions. Device JV characteristics suggest that CdTe solar cells with absorber layers deposited by close-space sublimation (CSS) at high temperature, 600-620°C, are more robust to the back contact Cu doping level and contacting temperature than CdTe grown at lower temperatures. The implication for industrial processes is a ~1% absolute increase in device efficiency for devices in which the CdTe is deposited on PV glass at high temperature. Perhaps more importantly, this increased performance is maintained for a larger window of temperature and doping level of the ZnTe:Cu back contact. For devices with CdTe absorbers deposited at 600°C, device efficiency in excess of 13.5% is maintained for back contacts containing 2-5 wt.% Cu, and for contacting temperatures ranging from 300-360°C. Red-light bias quantum efficiency (QE) and capacitance-voltage (CV) measurements are used to probe the effect of the introduced copper doping profiles and net acceptor density to better understand how ZnTe:Cu sources influences the resulting CdTe device.\",\"PeriodicalId\":6318,\"journal\":{\"name\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2012.6317598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6317598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

CdTe器件的性能在很大程度上取决于背触点的质量以及背触点在CdTe层本身引入铜掺杂的能力。铜掺杂ZnTe (ZnTe:Cu)由于其功功能和将铜源转化为CdTe的能力,是一种近乎理想的CdTe太阳能电池接触材料。过去的大多数ZnTe:Cu研究都是在相对较低的沉积温度(550°C及以下)下生长的CdTe。在这里,我们研究了在高达620°C的温度下使用ZnTe:Cu作为CdTe生长的背触点。我们观察到CdTe吸收剂沉积条件和优化的ZnTe:Cu接触条件之间有很强的相互作用。器件JV特性表明,高温(600 ~ 620℃)近空间升华(CSS)沉积吸收层的CdTe太阳能电池对Cu掺杂水平和接触温度的鲁棒性优于低温生长的CdTe太阳能电池。对工业过程的影响是在高温下将CdTe沉积在PV玻璃上的器件的器件效率绝对提高约1%。也许更重要的是,这种提高的性能保持在更大的温度窗口和ZnTe:Cu背接触的掺杂水平。对于在600°C沉积CdTe吸收剂的设备,对于含有2-5 wt.% Cu的背触点,以及接触温度范围为300-360°C的设备,设备效率保持在13.5%以上。红光偏置量子效率(QE)和电容电压(CV)测量用于探测引入铜掺杂谱和净受体密度的影响,以更好地了解ZnTe:Cu源如何影响最终的CdTe器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of CdTe growth temperature and ZnTe:Cu contacting conditions on CdTe device performance
CdTe device performance is strongly dependent on the quality of the back contact and the ability of the back contact to introduce a copper doping profile in the CdTe layer itself. Copper-doped ZnTe (ZnTe:Cu) is a nearly ideal contact material for CdTe solar cells due to its work function and ability to source copper to CdTe. Most of the ZnTe:Cu studies in the past used CdTe grown at relatively low deposition temperatures (550°C and below). Here we investigate the use of ZnTe:Cu as a back contact for CdTe grown at temperatures up to 620°C. We observe a strong interplay between the CdTe absorber deposition conditions and optimized ZnTe:Cu contacting conditions. Device JV characteristics suggest that CdTe solar cells with absorber layers deposited by close-space sublimation (CSS) at high temperature, 600-620°C, are more robust to the back contact Cu doping level and contacting temperature than CdTe grown at lower temperatures. The implication for industrial processes is a ~1% absolute increase in device efficiency for devices in which the CdTe is deposited on PV glass at high temperature. Perhaps more importantly, this increased performance is maintained for a larger window of temperature and doping level of the ZnTe:Cu back contact. For devices with CdTe absorbers deposited at 600°C, device efficiency in excess of 13.5% is maintained for back contacts containing 2-5 wt.% Cu, and for contacting temperatures ranging from 300-360°C. Red-light bias quantum efficiency (QE) and capacitance-voltage (CV) measurements are used to probe the effect of the introduced copper doping profiles and net acceptor density to better understand how ZnTe:Cu sources influences the resulting CdTe device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Lightweight PV module design for Building Integrated Photovoltaics Advances in silicon surface texturization by metal assisted chemical etching for photovoltaic applications Inverse Metamorphic III-V/epi-SiGe Tandem Solar Cell Performance Assessed by Optical and Electrical Modeling Enabling High-Efficiency InAs/GaAs Quantum Dot Solar Cells by Epitaxial Lift-Off and Light Management An autocorrelation-based copula model for producing realistic clear-sky index and photovoltaic power generation time-series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1