利用便携式微芯片气相色谱仪来识别和减少制药工厂的逸散性排放

Richard H. Lambert, James A. Owens
{"title":"利用便携式微芯片气相色谱仪来识别和减少制药工厂的逸散性排放","authors":"Richard H. Lambert,&nbsp;James A. Owens","doi":"10.1002/(SICI)1520-6521(199712)1:6<367::AID-FACT6>3.0.CO;2-N","DOIUrl":null,"url":null,"abstract":"<p>Eli Lilly and Company utilizes a mass balance procedure to track solvent usage at its manufacturing and pilot plant locations. Although the mass balance procedure provides accurate usage information, it is not useful as a tool for rapid identification and quantitation of fugitive volatile organic compounds (VOCs). As government regulations and permitting requirements demanded more specific information, it became obvious that a system was needed for rapid identification and quantitation of fugitive VOCs. In 1991, Eli Lilly and Company investigated both technology and methodology which would identify and quantitate specific VOCs. The objective was to reduce fugitive VOC emissions by understanding both the sources of emissions and the operating parameters that allowed their occurrence. After reviewing existing technologies such as FT-IR, mass spectrometry, and gas chromatography, the company purchased five portable microchip gas chromatographs. These instruments were incorporated into a routine monitoring program that profiled various production facilities and tank farms for specific VOC emissions. Once baseline emissions were established, the instruments were strategically located to monitor the effect of various improvement activities. The result of using portable gas chromatographs to establish an emission profile was an 86% reduction in fugitive VOC emissions over a 2-year period. This article presents a portable gas chromatograph and sample interface that quantitates methyl alcohol, ethyl alcohol, acetone, acetonitrile, ethyl acetate, methylene chloride, and toluene in 2 minutes. A typical linear range for these compounds is 5 ppm to 1%. The philosophy of incorporating this technology into routine manufacturing processes will also be discussed. © 1997 John Wiley &amp; Sons, Inc. Field Analyt Chem Technol 1:367–374, 1997</p>","PeriodicalId":100527,"journal":{"name":"Field Analytical Chemistry & Technology","volume":"1 6","pages":"367-374"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/(SICI)1520-6521(199712)1:6<367::AID-FACT6>3.0.CO;2-N","citationCount":"4","resultStr":"{\"title\":\"Utilization of a portable microchip gas chromatograph to identify and reduce fugitive emissions at a pharmaceutical manufacturing plant\",\"authors\":\"Richard H. Lambert,&nbsp;James A. Owens\",\"doi\":\"10.1002/(SICI)1520-6521(199712)1:6<367::AID-FACT6>3.0.CO;2-N\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Eli Lilly and Company utilizes a mass balance procedure to track solvent usage at its manufacturing and pilot plant locations. Although the mass balance procedure provides accurate usage information, it is not useful as a tool for rapid identification and quantitation of fugitive volatile organic compounds (VOCs). As government regulations and permitting requirements demanded more specific information, it became obvious that a system was needed for rapid identification and quantitation of fugitive VOCs. In 1991, Eli Lilly and Company investigated both technology and methodology which would identify and quantitate specific VOCs. The objective was to reduce fugitive VOC emissions by understanding both the sources of emissions and the operating parameters that allowed their occurrence. After reviewing existing technologies such as FT-IR, mass spectrometry, and gas chromatography, the company purchased five portable microchip gas chromatographs. These instruments were incorporated into a routine monitoring program that profiled various production facilities and tank farms for specific VOC emissions. Once baseline emissions were established, the instruments were strategically located to monitor the effect of various improvement activities. The result of using portable gas chromatographs to establish an emission profile was an 86% reduction in fugitive VOC emissions over a 2-year period. This article presents a portable gas chromatograph and sample interface that quantitates methyl alcohol, ethyl alcohol, acetone, acetonitrile, ethyl acetate, methylene chloride, and toluene in 2 minutes. A typical linear range for these compounds is 5 ppm to 1%. The philosophy of incorporating this technology into routine manufacturing processes will also be discussed. © 1997 John Wiley &amp; Sons, Inc. Field Analyt Chem Technol 1:367–374, 1997</p>\",\"PeriodicalId\":100527,\"journal\":{\"name\":\"Field Analytical Chemistry & Technology\",\"volume\":\"1 6\",\"pages\":\"367-374\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/(SICI)1520-6521(199712)1:6<367::AID-FACT6>3.0.CO;2-N\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Field Analytical Chemistry & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291520-6521%28199712%291%3A6%3C367%3A%3AAID-FACT6%3E3.0.CO%3B2-N\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Analytical Chemistry & Technology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291520-6521%28199712%291%3A6%3C367%3A%3AAID-FACT6%3E3.0.CO%3B2-N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

礼来公司利用质量平衡程序来跟踪其生产和试验工厂的溶剂使用情况。虽然质量平衡程序提供了准确的使用信息,但它不能作为快速鉴定和定量挥发性有机化合物(VOCs)的工具。由于政府法规和许可要求需要更具体的信息,因此显然需要一个系统来快速识别和定量挥发性挥发性有机化合物。1991年,礼来公司研究了识别和量化特定挥发性有机化合物的技术和方法。目标是通过了解排放源和允许其发生的操作参数来减少挥发性VOC排放。在审查了FT-IR、质谱法、气相色谱等现有技术后,该公司购买了5台便携式微芯片气相色谱仪。这些仪器被纳入了一个常规监测计划,该计划对各种生产设施和油罐库进行了具体的VOC排放。一旦确定了基准排放量,就战略性地放置这些工具,以监测各种改进活动的效果。使用便携式气相色谱仪建立排放概况的结果是,在2年期间,挥发性VOC排放量减少了86%。本文介绍了一种便携式气相色谱仪和样品界面,可在2分钟内定量测定甲醇,乙醇,丙酮,乙腈,乙酸乙酯,二氯甲烷和甲苯。这些化合物的典型线性范围是5ppm到1%。将这项技术纳入日常制造过程的理念也将被讨论。©1997 John Wiley &儿子,Inc。化学工程学报(英文版),1997
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilization of a portable microchip gas chromatograph to identify and reduce fugitive emissions at a pharmaceutical manufacturing plant

Eli Lilly and Company utilizes a mass balance procedure to track solvent usage at its manufacturing and pilot plant locations. Although the mass balance procedure provides accurate usage information, it is not useful as a tool for rapid identification and quantitation of fugitive volatile organic compounds (VOCs). As government regulations and permitting requirements demanded more specific information, it became obvious that a system was needed for rapid identification and quantitation of fugitive VOCs. In 1991, Eli Lilly and Company investigated both technology and methodology which would identify and quantitate specific VOCs. The objective was to reduce fugitive VOC emissions by understanding both the sources of emissions and the operating parameters that allowed their occurrence. After reviewing existing technologies such as FT-IR, mass spectrometry, and gas chromatography, the company purchased five portable microchip gas chromatographs. These instruments were incorporated into a routine monitoring program that profiled various production facilities and tank farms for specific VOC emissions. Once baseline emissions were established, the instruments were strategically located to monitor the effect of various improvement activities. The result of using portable gas chromatographs to establish an emission profile was an 86% reduction in fugitive VOC emissions over a 2-year period. This article presents a portable gas chromatograph and sample interface that quantitates methyl alcohol, ethyl alcohol, acetone, acetonitrile, ethyl acetate, methylene chloride, and toluene in 2 minutes. A typical linear range for these compounds is 5 ppm to 1%. The philosophy of incorporating this technology into routine manufacturing processes will also be discussed. © 1997 John Wiley & Sons, Inc. Field Analyt Chem Technol 1:367–374, 1997

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technological innovation in field analytical chemistry A compact optical system for multi-determination of biochemical oxygen demand using disposable strips On-site gas chromatographic determination of explosives in soils Real-time classification performance and failure mode analysis of a physical/chemical sensor array and a probabilistic neural network Minicolumn field sampling and flow-injection-atomic absorption spectrometric determination of lead in seawater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1