新型III-N异质结构器件,用于低功耗逻辑等

P. Fay, W. Li, L. Cao, K. Pourang, S. M. Islam, C. Lund, S. Saima, H. Ilatikhameneh, T. Amin, J. Huang, R. Rahman, D. Jena, S. Keller, Gerhard Klimeck
{"title":"新型III-N异质结构器件,用于低功耗逻辑等","authors":"P. Fay, W. Li, L. Cao, K. Pourang, S. M. Islam, C. Lund, S. Saima, H. Ilatikhameneh, T. Amin, J. Huang, R. Rahman, D. Jena, S. Keller, Gerhard Klimeck","doi":"10.1109/NANO.2016.7751336","DOIUrl":null,"url":null,"abstract":"Future ultra-scaled logic and low-power systems require fundamental advances in semiconductor device technology. Due to power constraints, device concepts capable of achieving switching slopes (SS) steeper than 60 mV/decade are essential if scaling of conventional computational architectures is to continue. Likewise, ultra low power systems also benefit from devices capable of maintaining performance under low-voltage operation. Towards this end, tunneling field effect transistors (TFETs) are one promising alternative. While much work has been devoted to realizing TFETs in Si, Ge, and narrow-gap III-V materials, the use of III-N heterostructures and the exploitation of polarization engineering offers some unique opportunities. From physics-based simulations, performance of GaN/InGaN/GaN heterostructure TFETs appear capable of delivering average SS approaching 20 mV/decade over 4 decades of drain current, and on-current densities exceeding 100 μA/μm in aggressively scaled nanowire configurations. Experimental progress towards realizing III-N based TFETs includes demonstration of GaN/InGaN/GaN backward tunnel diodes by both MOCVD and MBE, and nanowires grown selectively by MBE and used as the basis for device fabrication.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"4 1","pages":"767-769"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Novel III-N heterostructure devices for low-power logic and more\",\"authors\":\"P. Fay, W. Li, L. Cao, K. Pourang, S. M. Islam, C. Lund, S. Saima, H. Ilatikhameneh, T. Amin, J. Huang, R. Rahman, D. Jena, S. Keller, Gerhard Klimeck\",\"doi\":\"10.1109/NANO.2016.7751336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future ultra-scaled logic and low-power systems require fundamental advances in semiconductor device technology. Due to power constraints, device concepts capable of achieving switching slopes (SS) steeper than 60 mV/decade are essential if scaling of conventional computational architectures is to continue. Likewise, ultra low power systems also benefit from devices capable of maintaining performance under low-voltage operation. Towards this end, tunneling field effect transistors (TFETs) are one promising alternative. While much work has been devoted to realizing TFETs in Si, Ge, and narrow-gap III-V materials, the use of III-N heterostructures and the exploitation of polarization engineering offers some unique opportunities. From physics-based simulations, performance of GaN/InGaN/GaN heterostructure TFETs appear capable of delivering average SS approaching 20 mV/decade over 4 decades of drain current, and on-current densities exceeding 100 μA/μm in aggressively scaled nanowire configurations. Experimental progress towards realizing III-N based TFETs includes demonstration of GaN/InGaN/GaN backward tunnel diodes by both MOCVD and MBE, and nanowires grown selectively by MBE and used as the basis for device fabrication.\",\"PeriodicalId\":6646,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"4 1\",\"pages\":\"767-769\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2016.7751336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

未来的超尺度逻辑和低功耗系统需要半导体器件技术的根本进步。由于功率限制,如果要继续扩展传统计算架构,那么能够实现大于60 mV/decade的开关斜率(SS)的器件概念是必不可少的。同样,超低功率系统也受益于能够在低压运行下保持性能的设备。为此,隧道场效应晶体管(tfet)是一个很有前途的选择。虽然在Si, Ge和窄间隙III-V材料中实现tfet的工作已经投入了很多,但III-N异质结构的使用和极化工程的开发提供了一些独特的机会。从基于物理的模拟中,GaN/InGaN/GaN异质结构tfet的性能似乎能够在40年的漏极电流下提供接近20 mV/decade的平均SS,并且在积极缩放的纳米线配置中,导通电流密度超过100 μA/μm。实现III-N基tfet的实验进展包括MOCVD和MBE的GaN/InGaN/GaN反向隧道二极管的演示,以及MBE选择性生长的纳米线作为器件制造的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel III-N heterostructure devices for low-power logic and more
Future ultra-scaled logic and low-power systems require fundamental advances in semiconductor device technology. Due to power constraints, device concepts capable of achieving switching slopes (SS) steeper than 60 mV/decade are essential if scaling of conventional computational architectures is to continue. Likewise, ultra low power systems also benefit from devices capable of maintaining performance under low-voltage operation. Towards this end, tunneling field effect transistors (TFETs) are one promising alternative. While much work has been devoted to realizing TFETs in Si, Ge, and narrow-gap III-V materials, the use of III-N heterostructures and the exploitation of polarization engineering offers some unique opportunities. From physics-based simulations, performance of GaN/InGaN/GaN heterostructure TFETs appear capable of delivering average SS approaching 20 mV/decade over 4 decades of drain current, and on-current densities exceeding 100 μA/μm in aggressively scaled nanowire configurations. Experimental progress towards realizing III-N based TFETs includes demonstration of GaN/InGaN/GaN backward tunnel diodes by both MOCVD and MBE, and nanowires grown selectively by MBE and used as the basis for device fabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer coated nanorobot end-effector for efficient drug delivery A three-dimensional ZnO nanowires photodetector Relationship between electric properties and surface flatness of (ZnO)x(InN)1−x films on ZnO templates Inter-particle potential fluctuation of two fine particles suspended in Ar plasmas Study of γ-Fe2O3/Au core/shell nanoparticles as the contrast agent for high-Tc SQUID-based low field nuclear magnetic resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1