Thanh Khoa Phung, Thao T. T. Tran, An Ngo Thanh, K. B. Vu
{"title":"弱碱存在下配体稳定金纳米颗粒催化苯甲醇氧化","authors":"Thanh Khoa Phung, Thao T. T. Tran, An Ngo Thanh, K. B. Vu","doi":"10.51316/jca.2022.043","DOIUrl":null,"url":null,"abstract":"Ligand-stabilized gold nanoparticles (tetrakis(hydroxymethyl)phosphonium chloride-Au, citrate-Au, cetrimonium bromide-Au) were synthesized and mixed with several weak-base solids (barium carbonate, Amberlite IRA-900) and acidic solid (Dowex 50WX2 resin). Those catalysts were applied for the oxidation of benzyl alcohol in water at 80 oC. Almost ligand-stabilized Au nanoparticles/weak-base solids showed good conversion of benzyl alcohol and high selectivity of benzoic acid, whereas ligand-stabilized Au nanoparticles/acidic solid were catalytically inactive. Nanoparticles were characterized by transmission electron microscopy, zetapotential measurement, and dynamic light scattering. The catalytic activity and product selectivity were determined by using a gas chromatography coupled with a mass selective detector. Our study suggests that the oxidation reaction in water could be catalyzed by gold with the presence of weak-base solids.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oxidation of benzyl alcohol catalyzed by ligand-stabilized Au nanoparticles in the presence of weak bases\",\"authors\":\"Thanh Khoa Phung, Thao T. T. Tran, An Ngo Thanh, K. B. Vu\",\"doi\":\"10.51316/jca.2022.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ligand-stabilized gold nanoparticles (tetrakis(hydroxymethyl)phosphonium chloride-Au, citrate-Au, cetrimonium bromide-Au) were synthesized and mixed with several weak-base solids (barium carbonate, Amberlite IRA-900) and acidic solid (Dowex 50WX2 resin). Those catalysts were applied for the oxidation of benzyl alcohol in water at 80 oC. Almost ligand-stabilized Au nanoparticles/weak-base solids showed good conversion of benzyl alcohol and high selectivity of benzoic acid, whereas ligand-stabilized Au nanoparticles/acidic solid were catalytically inactive. Nanoparticles were characterized by transmission electron microscopy, zetapotential measurement, and dynamic light scattering. The catalytic activity and product selectivity were determined by using a gas chromatography coupled with a mass selective detector. Our study suggests that the oxidation reaction in water could be catalyzed by gold with the presence of weak-base solids.\",\"PeriodicalId\":23507,\"journal\":{\"name\":\"Vietnam Journal of Catalysis and Adsorption\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Catalysis and Adsorption\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51316/jca.2022.043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2022.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oxidation of benzyl alcohol catalyzed by ligand-stabilized Au nanoparticles in the presence of weak bases
Ligand-stabilized gold nanoparticles (tetrakis(hydroxymethyl)phosphonium chloride-Au, citrate-Au, cetrimonium bromide-Au) were synthesized and mixed with several weak-base solids (barium carbonate, Amberlite IRA-900) and acidic solid (Dowex 50WX2 resin). Those catalysts were applied for the oxidation of benzyl alcohol in water at 80 oC. Almost ligand-stabilized Au nanoparticles/weak-base solids showed good conversion of benzyl alcohol and high selectivity of benzoic acid, whereas ligand-stabilized Au nanoparticles/acidic solid were catalytically inactive. Nanoparticles were characterized by transmission electron microscopy, zetapotential measurement, and dynamic light scattering. The catalytic activity and product selectivity were determined by using a gas chromatography coupled with a mass selective detector. Our study suggests that the oxidation reaction in water could be catalyzed by gold with the presence of weak-base solids.