饮用水分配系统水质时间序列数据集的数据质量评估框架

Killian Gleeson, S. Husband, John W. Gaffney, J. Boxall
{"title":"饮用水分配系统水质时间序列数据集的数据质量评估框架","authors":"Killian Gleeson, S. Husband, John W. Gaffney, J. Boxall","doi":"10.2166/aqua.2023.228","DOIUrl":null,"url":null,"abstract":"\n The derivation of information from monitoring drinking water quality at high spatiotemporal resolution as it passes through complex, ageing distribution systems is limited by the variable data quality from the sensitive scientific instruments necessary. A framework is developed to overcome this. Application to three extensive real-world datasets, consisting of 92 multi-parameter water quality time series of data taken from different hardware configurations, shows how the algorithms can provide quality-assured data and actionable insight. Focussing on turbidity and chlorine, the framework consists of three steps to bridge the gap between data and information; firstly, an automated rule-based data quality assessment is developed and applied to each water quality sensor, then, cross-correlation is used to determine spatiotemporal relationships and finally, spatiotemporal information enables multi-sensor data quality validation. The framework provides a method to achieve automated data quality assurance, applicable to both historic and online datasets, such that insight and actionable insight can be gained to help ensure the supply of safe, clean drinking water to protect public health.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A data quality assessment framework for drinking water distribution system water quality time series datasets\",\"authors\":\"Killian Gleeson, S. Husband, John W. Gaffney, J. Boxall\",\"doi\":\"10.2166/aqua.2023.228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The derivation of information from monitoring drinking water quality at high spatiotemporal resolution as it passes through complex, ageing distribution systems is limited by the variable data quality from the sensitive scientific instruments necessary. A framework is developed to overcome this. Application to three extensive real-world datasets, consisting of 92 multi-parameter water quality time series of data taken from different hardware configurations, shows how the algorithms can provide quality-assured data and actionable insight. Focussing on turbidity and chlorine, the framework consists of three steps to bridge the gap between data and information; firstly, an automated rule-based data quality assessment is developed and applied to each water quality sensor, then, cross-correlation is used to determine spatiotemporal relationships and finally, spatiotemporal information enables multi-sensor data quality validation. The framework provides a method to achieve automated data quality assurance, applicable to both historic and online datasets, such that insight and actionable insight can be gained to help ensure the supply of safe, clean drinking water to protect public health.\",\"PeriodicalId\":17666,\"journal\":{\"name\":\"Journal of Water Supply: Research and Technology-Aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply: Research and Technology-Aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2023.228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2023.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当饮用水质量通过复杂的、老化的分布系统时,以高时空分辨率监测饮用水质量的信息推导受到必要的敏感科学仪器的可变数据质量的限制。开发了一个框架来克服这个问题。应用于三个广泛的真实数据集,包括92个多参数水质时间序列数据,这些数据来自不同的硬件配置,显示了算法如何提供有质量保证的数据和可操作的见解。该框架以浊度和氯为重点,包括三个步骤,以弥合数据和信息之间的差距;首先,开发了基于规则的数据质量自动评估方法,并将其应用于每个水质传感器,然后利用相互关系确定时空关系,最后利用时空信息实现多传感器数据质量验证。该框架提供了一种实现自动化数据质量保证的方法,既适用于历史数据集,也适用于在线数据集,从而能够获得见解和可操作的见解,帮助确保提供安全、清洁的饮用水,以保护公众健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A data quality assessment framework for drinking water distribution system water quality time series datasets
The derivation of information from monitoring drinking water quality at high spatiotemporal resolution as it passes through complex, ageing distribution systems is limited by the variable data quality from the sensitive scientific instruments necessary. A framework is developed to overcome this. Application to three extensive real-world datasets, consisting of 92 multi-parameter water quality time series of data taken from different hardware configurations, shows how the algorithms can provide quality-assured data and actionable insight. Focussing on turbidity and chlorine, the framework consists of three steps to bridge the gap between data and information; firstly, an automated rule-based data quality assessment is developed and applied to each water quality sensor, then, cross-correlation is used to determine spatiotemporal relationships and finally, spatiotemporal information enables multi-sensor data quality validation. The framework provides a method to achieve automated data quality assurance, applicable to both historic and online datasets, such that insight and actionable insight can be gained to help ensure the supply of safe, clean drinking water to protect public health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of oxidative damage in Escherichia coli caused by epigallocatechin gallate (EGCG) in the presence of calcium ions Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies Assessment of water demand and potential water sources to face future water scarcity of hilly regions A data quality assessment framework for drinking water distribution system water quality time series datasets Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1