非牛顿流体膝关节假体粘弹流体动力润滑的数值分析

IF 0.1 Q4 PHYSICS, MULTIDISCIPLINARY Anales AFA Pub Date : 2022-08-16 DOI:10.31527/analesafa.2022.fluidos.57
L.E. Robledo Blasco, B. Weiss, M. Berli, J. Di Paolo
{"title":"非牛顿流体膝关节假体粘弹流体动力润滑的数值分析","authors":"L.E. Robledo Blasco, B. Weiss, M. Berli, J. Di Paolo","doi":"10.31527/analesafa.2022.fluidos.57","DOIUrl":null,"url":null,"abstract":"In this work, a computational model of thin film lubrication applied to a knee prosthesis was designed in order to make a comparison between three constitutive models, i.e. a power law, the Carreau-Yasuda model and the Cross model. The equivalent model of the knee prosthesis was modeled as a rigid cylinder on a deformable plane. The mechanical behavior of the deformable component representing the tibial base was assumed as a viscoelastic Standard Linear Solid(SLS). The governing equations were solved simultaneously with the determination of a free-moving boundary by implementing it in COMSOL Multiphysics software. The results obtained showed that the Cross model presents the highest shear rate value, the lowest film thickness and the dynamic viscosity with less variation along the lubrication channel, reaching a minimum viscosity value of 0.02 Pa.s. The Carreau-Yasuda model presents the highest value of friction coefficient, being 21.5 % higher than for the Power Law model and 3.67 % higher than the Cross model.","PeriodicalId":41478,"journal":{"name":"Anales AFA","volume":"21 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL ANALYSIS OF VISCOELASTOHYDRODYNAMIC LUBRICATION IN KNEE PROSTHESIS WITH NON-NEWTONIAN FLUID\",\"authors\":\"L.E. Robledo Blasco, B. Weiss, M. Berli, J. Di Paolo\",\"doi\":\"10.31527/analesafa.2022.fluidos.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a computational model of thin film lubrication applied to a knee prosthesis was designed in order to make a comparison between three constitutive models, i.e. a power law, the Carreau-Yasuda model and the Cross model. The equivalent model of the knee prosthesis was modeled as a rigid cylinder on a deformable plane. The mechanical behavior of the deformable component representing the tibial base was assumed as a viscoelastic Standard Linear Solid(SLS). The governing equations were solved simultaneously with the determination of a free-moving boundary by implementing it in COMSOL Multiphysics software. The results obtained showed that the Cross model presents the highest shear rate value, the lowest film thickness and the dynamic viscosity with less variation along the lubrication channel, reaching a minimum viscosity value of 0.02 Pa.s. The Carreau-Yasuda model presents the highest value of friction coefficient, being 21.5 % higher than for the Power Law model and 3.67 % higher than the Cross model.\",\"PeriodicalId\":41478,\"journal\":{\"name\":\"Anales AFA\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anales AFA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31527/analesafa.2022.fluidos.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales AFA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31527/analesafa.2022.fluidos.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,为了比较三种本构模型,即幂律、careau - yasuda模型和Cross模型,设计了一个应用于膝关节假体的薄膜润滑计算模型。将膝关节假体等效模型建模为可变形平面上的刚性圆柱体。将代表胫骨基底的可变形构件的力学行为假设为粘弹性标准线性实体(SLS)。在COMSOL Multiphysics软件中实现了控制方程的求解和自由运动边界的确定。结果表明,Cross模型的剪切速率值最高,膜厚最小,动态粘度沿润滑通道变化较小,最小粘度值为0.02 Pa.s。carau - yasuda模型的摩擦系数最高,比幂律模型高21.5%,比Cross模型高3.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NUMERICAL ANALYSIS OF VISCOELASTOHYDRODYNAMIC LUBRICATION IN KNEE PROSTHESIS WITH NON-NEWTONIAN FLUID
In this work, a computational model of thin film lubrication applied to a knee prosthesis was designed in order to make a comparison between three constitutive models, i.e. a power law, the Carreau-Yasuda model and the Cross model. The equivalent model of the knee prosthesis was modeled as a rigid cylinder on a deformable plane. The mechanical behavior of the deformable component representing the tibial base was assumed as a viscoelastic Standard Linear Solid(SLS). The governing equations were solved simultaneously with the determination of a free-moving boundary by implementing it in COMSOL Multiphysics software. The results obtained showed that the Cross model presents the highest shear rate value, the lowest film thickness and the dynamic viscosity with less variation along the lubrication channel, reaching a minimum viscosity value of 0.02 Pa.s. The Carreau-Yasuda model presents the highest value of friction coefficient, being 21.5 % higher than for the Power Law model and 3.67 % higher than the Cross model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anales AFA
Anales AFA PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.40
自引率
0.00%
发文量
43
期刊最新文献
COPPER NANOPARTICLES FOR IONIZING RADIATION DOSIMETRY FOR THERANOSTICS THE INERTIA OF LIGHT. VERIFICATION OF NEWTON’S SECOND LAW BY A CONFINED FLOW OF RADIATION IN A REFLECTIVE CAVITY EFFECT OF INTENSE MAGNETIC FIELDS ON THE TRAJECTORY OF ELECTRONSPROPAGATING IN LOW DENSITY MEDIA OF INTEREST FOR MRI-LINAC RADIOTHERAPY 22C GROUND STATE DESCRIPTION EVALUATION OF THE HELIOSAT-4 AND MCCLEAR MODELS FOR SOLAR GLOBALIRRADIATION ESTIMATE AT TWO SITES IN ARGENTINA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1