用于图匹配和对象发现的and - or图挖掘

Quanshi Zhang, Y. Wu, Song-Chun Zhu
{"title":"用于图匹配和对象发现的and - or图挖掘","authors":"Quanshi Zhang, Y. Wu, Song-Chun Zhu","doi":"10.1109/ICCV.2015.15","DOIUrl":null,"url":null,"abstract":"This paper reformulates the theory of graph mining on the technical basis of graph matching, and extends its scope of applications to computer vision. Given a set of attributed relational graphs (ARGs), we propose to use a hierarchical And-Or Graph (AoG) to model the pattern of maximal-size common subgraphs embedded in the ARGs, and we develop a general method to mine the AoG model from the unlabeled ARGs. This method provides a general solution to the problem of mining hierarchical models from unannotated visual data without exhaustive search of objects. We apply our method to RGB/RGB-D images and videos to demonstrate its generality and the wide range of applicability. The code will be available at https://sites.google.com/site/quanshizhang/mining-and-or-graphs.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"44 1","pages":"55-63"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Mining And-Or Graphs for Graph Matching and Object Discovery\",\"authors\":\"Quanshi Zhang, Y. Wu, Song-Chun Zhu\",\"doi\":\"10.1109/ICCV.2015.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reformulates the theory of graph mining on the technical basis of graph matching, and extends its scope of applications to computer vision. Given a set of attributed relational graphs (ARGs), we propose to use a hierarchical And-Or Graph (AoG) to model the pattern of maximal-size common subgraphs embedded in the ARGs, and we develop a general method to mine the AoG model from the unlabeled ARGs. This method provides a general solution to the problem of mining hierarchical models from unannotated visual data without exhaustive search of objects. We apply our method to RGB/RGB-D images and videos to demonstrate its generality and the wide range of applicability. The code will be available at https://sites.google.com/site/quanshizhang/mining-and-or-graphs.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"44 1\",\"pages\":\"55-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文在图匹配的技术基础上重新阐述了图挖掘理论,并将其应用范围扩展到计算机视觉。在给定一组属性关系图(arg)的基础上,我们提出了一种分层的and - or图(AoG)来建模嵌入在arg中的最大尺寸公共子图的模式,并开发了一种从未标记的arg中挖掘AoG模型的通用方法。该方法为从无注释的可视化数据中挖掘层次模型问题提供了一种通用的解决方案,而无需对对象进行穷举搜索。我们将该方法应用于RGB/RGB- d图像和视频,以证明其通用性和广泛的适用性。代码可在https://sites.google.com/site/quanshizhang/mining-and-or-graphs上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining And-Or Graphs for Graph Matching and Object Discovery
This paper reformulates the theory of graph mining on the technical basis of graph matching, and extends its scope of applications to computer vision. Given a set of attributed relational graphs (ARGs), we propose to use a hierarchical And-Or Graph (AoG) to model the pattern of maximal-size common subgraphs embedded in the ARGs, and we develop a general method to mine the AoG model from the unlabeled ARGs. This method provides a general solution to the problem of mining hierarchical models from unannotated visual data without exhaustive search of objects. We apply our method to RGB/RGB-D images and videos to demonstrate its generality and the wide range of applicability. The code will be available at https://sites.google.com/site/quanshizhang/mining-and-or-graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1