小白蛋白中间神经元作为恐惧记忆持续的细胞基质的鉴定

Gürsel Çalışkan, Iris Müller, M. Semtner, A. Winkelmann, Ahsan S. Raza, J. Hollnagel, Anton Rösler, U. Heinemann, O. Stork, J. Meier
{"title":"小白蛋白中间神经元作为恐惧记忆持续的细胞基质的鉴定","authors":"Gürsel Çalışkan, Iris Müller, M. Semtner, A. Winkelmann, Ahsan S. Raza, J. Hollnagel, Anton Rösler, U. Heinemann, O. Stork, J. Meier","doi":"10.1093/cercor/bhw001","DOIUrl":null,"url":null,"abstract":"Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L185L to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"43 1","pages":"2325 - 2340"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence\",\"authors\":\"Gürsel Çalışkan, Iris Müller, M. Semtner, A. Winkelmann, Ahsan S. Raza, J. Hollnagel, Anton Rösler, U. Heinemann, O. Stork, J. Meier\",\"doi\":\"10.1093/cercor/bhw001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L185L to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders.\",\"PeriodicalId\":9825,\"journal\":{\"name\":\"Cerebral Cortex (New York, NY)\",\"volume\":\"43 1\",\"pages\":\"2325 - 2340\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral Cortex (New York, NY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhw001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cercor/bhw001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

小白蛋白阳性(PV)篮状细胞在皮层和海马中提供周围抑制,并控制记忆相关网络活动模式的产生,如尖波涟漪(SPW-R)。这类快速脉冲中间神经元的退化已经在神经精神疾病中被观察到,来自动物模型的证据表明它们参与了恐惧记忆的获得和消失。在这里,我们使用神经元类型靶向表达突触前功能获得型甘氨酸受体RNA变体GlyR α3L185L的小鼠,从基因上增强PV中间神经元的网络活性。这些小鼠显示情境恐惧记忆的消失减少,但听觉提示的恐惧记忆正常。此外,它们在CA3和CA1区显示出SPW-R活性的增加,并促进了这种特殊网络活动模式的传播,这是在海马腹侧切片制备中确定的。绝灭期间的个体冻结水平与SPW-R繁殖的基因型相关。腹侧海马体的小白蛋白免疫反应性也是如此,在GlyR突变小鼠中,小白蛋白免疫反应性普遍增强,并与个体冷冻水平相关。综上所述,这些结果确定了PV中间神经元是恐惧记忆持久性和海马体中相关SPW-R活动的关键细胞基质。我们的研究结果可能与创伤后应激和焦虑障碍的生理相关因素的识别和表征有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence
Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L185L to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consistently increased dorsolateral prefrontal cortex activity during the exposure to acute stressors Conditioning and pseudoconditioning differently change intrinsic excitability of inhibitory interneurons in the neocortex Phonological properties of logographic words modulate brain activation in bilinguals: a comparative study of Chinese characters and Japanese Kanji Inferior parietal cortex represents relational structures for explicit transitive inference In vivo ephaptic coupling allows memory network formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1