Velo和REXAN -实验设施的集成数据管理和高速分析

K. K. Dam, J. Carson, A. Corrigan, D. Einstein, Zoe Guillen, Brandi S. Heath, A. Kuprat, Ingela Lanekoff, C. Lansing, J. Laskin, Dongsheng Li, Y. Liu, M. Marshall, E. Miller, G. Orr, Paulo Pinheiro da Silva, Seun Ryu, C. Szymanski, Mathew Thomas
{"title":"Velo和REXAN -实验设施的集成数据管理和高速分析","authors":"K. K. Dam, J. Carson, A. Corrigan, D. Einstein, Zoe Guillen, Brandi S. Heath, A. Kuprat, Ingela Lanekoff, C. Lansing, J. Laskin, Dongsheng Li, Y. Liu, M. Marshall, E. Miller, G. Orr, Paulo Pinheiro da Silva, Seun Ryu, C. Szymanski, Mathew Thomas","doi":"10.1109/ESCIENCE.2012.6404463","DOIUrl":null,"url":null,"abstract":"The Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL) is creating a `Rapid Experimental Analysis' (REXAN) Framework, based on the concept of reusable component libraries. REXAN allows developers to quickly compose and customize high throughput analysis pipelines for a range of experiments, as well as supporting the creation of multi-modal analysis pipelines. In addition, PNNL has coupled REXAN with its collaborative data management and analysis environment Velo to create an easy to use data management and analysis environments for experimental facilities. This paper will discuss the benefits of Velo and REXAN in the context of three examples: PNNL High Resolution Mass Spectrometry - reducing analysis times from hours to seconds, and enabling the analysis of much larger data samples (100KB to 40GB) at the same time. · ALS X-Ray Tomography - reducing analysis times of combined STXM and EM data collected at the ALS from weeks to minutes, decreasing manual work and increasing data volumes that can be analysed in a single step. · Multi-modal nano-scale analysis of STXM and TEM data - providing a semi automated process for particle detection. The creation of REXAN has significantly shortened the development time for these analysis pipelines. The integration of Velo and REXAN has significantly increased the scientific productivity of the instruments and their users by creating easy to use data management and analysis environments with greatly reduced analysis times and improved analysis capabilities.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"26 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Velo and REXAN — Integrated data management and high speed analysis for experimental facilities\",\"authors\":\"K. K. Dam, J. Carson, A. Corrigan, D. Einstein, Zoe Guillen, Brandi S. Heath, A. Kuprat, Ingela Lanekoff, C. Lansing, J. Laskin, Dongsheng Li, Y. Liu, M. Marshall, E. Miller, G. Orr, Paulo Pinheiro da Silva, Seun Ryu, C. Szymanski, Mathew Thomas\",\"doi\":\"10.1109/ESCIENCE.2012.6404463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL) is creating a `Rapid Experimental Analysis' (REXAN) Framework, based on the concept of reusable component libraries. REXAN allows developers to quickly compose and customize high throughput analysis pipelines for a range of experiments, as well as supporting the creation of multi-modal analysis pipelines. In addition, PNNL has coupled REXAN with its collaborative data management and analysis environment Velo to create an easy to use data management and analysis environments for experimental facilities. This paper will discuss the benefits of Velo and REXAN in the context of three examples: PNNL High Resolution Mass Spectrometry - reducing analysis times from hours to seconds, and enabling the analysis of much larger data samples (100KB to 40GB) at the same time. · ALS X-Ray Tomography - reducing analysis times of combined STXM and EM data collected at the ALS from weeks to minutes, decreasing manual work and increasing data volumes that can be analysed in a single step. · Multi-modal nano-scale analysis of STXM and TEM data - providing a semi automated process for particle detection. The creation of REXAN has significantly shortened the development time for these analysis pipelines. The integration of Velo and REXAN has significantly increased the scientific productivity of the instruments and their users by creating easy to use data management and analysis environments with greatly reduced analysis times and improved analysis capabilities.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":\"26 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCIENCE.2012.6404463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCIENCE.2012.6404463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

太平洋西北国家实验室(PNNL)的化学成像计划正在创建一个基于可重用组件库概念的“快速实验分析”(REXAN)框架。REXAN允许开发人员为一系列实验快速组合和定制高通量分析管道,并支持创建多模态分析管道。此外,PNNL将REXAN与其协作数据管理和分析环境Velo相结合,为实验设施创建了一个易于使用的数据管理和分析环境。本文将在三个例子中讨论Velo和REXAN的优势:PNNL高分辨率质谱分析-将分析时间从数小时缩短到数秒,并能够同时分析更大的数据样本(100KB到40GB)。·ALS x射线断层扫描-将ALS收集的STXM和EM数据的综合分析时间从几周减少到几分钟,减少了手工工作,增加了单步分析的数据量。·STXM和TEM数据的多模态纳米级分析-为粒子检测提供半自动化过程。REXAN的创建大大缩短了这些分析管道的开发时间。Velo和REXAN的集成通过创建易于使用的数据管理和分析环境,大大减少了分析时间,提高了分析能力,大大提高了仪器及其用户的科学生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Velo and REXAN — Integrated data management and high speed analysis for experimental facilities
The Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL) is creating a `Rapid Experimental Analysis' (REXAN) Framework, based on the concept of reusable component libraries. REXAN allows developers to quickly compose and customize high throughput analysis pipelines for a range of experiments, as well as supporting the creation of multi-modal analysis pipelines. In addition, PNNL has coupled REXAN with its collaborative data management and analysis environment Velo to create an easy to use data management and analysis environments for experimental facilities. This paper will discuss the benefits of Velo and REXAN in the context of three examples: PNNL High Resolution Mass Spectrometry - reducing analysis times from hours to seconds, and enabling the analysis of much larger data samples (100KB to 40GB) at the same time. · ALS X-Ray Tomography - reducing analysis times of combined STXM and EM data collected at the ALS from weeks to minutes, decreasing manual work and increasing data volumes that can be analysed in a single step. · Multi-modal nano-scale analysis of STXM and TEM data - providing a semi automated process for particle detection. The creation of REXAN has significantly shortened the development time for these analysis pipelines. The integration of Velo and REXAN has significantly increased the scientific productivity of the instruments and their users by creating easy to use data management and analysis environments with greatly reduced analysis times and improved analysis capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scientific Workflow Interchanging through Patterns: Reversals and Lessons Learned Shape Analysis Using the Spectral Graph Wavelet Transform Provenance analysis: Towards quality provenance Fast confidential search for bio-medical data using Bloom filters and Homomorphic Cryptography Calibration of watershed models using cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1