{"title":"无桥zeta交直流变换器PWM与改进型单周期控制的比较","authors":"Preethy V. Warrier, P. Preetha","doi":"10.1109/ICPACE.2015.7274951","DOIUrl":null,"url":null,"abstract":"Bridgeless topologies have been introduced to improve the input power factor and hence reduce THD and ripples in the input current. Bridgeless zeta converter has the advantages of reduced number of semiconductor switch, easy electrical isolation and reduced in-rush current during start-up. Conventional PWM technique is used for the control of switches. But it suffers from the problem of slow dynamic response. With One Cycle Control it is possible to eliminate input perturbations in one switching cycle. In this paper, a comparison has been made between the conventional PWM technique and modified One Cycle Control for bridgeless zeta converter. The model is developed using MATLAB/Simulink and the results have been analyzed.","PeriodicalId":6644,"journal":{"name":"2015 International Conference on Power and Advanced Control Engineering (ICPACE)","volume":"2 1","pages":"244-247"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of PWM and modified One Cycle Control for bridgeless zeta AC-DC converter\",\"authors\":\"Preethy V. Warrier, P. Preetha\",\"doi\":\"10.1109/ICPACE.2015.7274951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bridgeless topologies have been introduced to improve the input power factor and hence reduce THD and ripples in the input current. Bridgeless zeta converter has the advantages of reduced number of semiconductor switch, easy electrical isolation and reduced in-rush current during start-up. Conventional PWM technique is used for the control of switches. But it suffers from the problem of slow dynamic response. With One Cycle Control it is possible to eliminate input perturbations in one switching cycle. In this paper, a comparison has been made between the conventional PWM technique and modified One Cycle Control for bridgeless zeta converter. The model is developed using MATLAB/Simulink and the results have been analyzed.\",\"PeriodicalId\":6644,\"journal\":{\"name\":\"2015 International Conference on Power and Advanced Control Engineering (ICPACE)\",\"volume\":\"2 1\",\"pages\":\"244-247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Power and Advanced Control Engineering (ICPACE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPACE.2015.7274951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Power and Advanced Control Engineering (ICPACE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPACE.2015.7274951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of PWM and modified One Cycle Control for bridgeless zeta AC-DC converter
Bridgeless topologies have been introduced to improve the input power factor and hence reduce THD and ripples in the input current. Bridgeless zeta converter has the advantages of reduced number of semiconductor switch, easy electrical isolation and reduced in-rush current during start-up. Conventional PWM technique is used for the control of switches. But it suffers from the problem of slow dynamic response. With One Cycle Control it is possible to eliminate input perturbations in one switching cycle. In this paper, a comparison has been made between the conventional PWM technique and modified One Cycle Control for bridgeless zeta converter. The model is developed using MATLAB/Simulink and the results have been analyzed.